Institute for Applied Mathematics WS 2020/21

Prof. Dr. Anton Bovier, Florian Kreten

Sheet 12, "Introduction to Stochastic Analysis"

Due on February 05, 2021

Definition. A (only for simplicity one-dimensional) Gaussian process $X = (X_t)_{t \in [0,1]}$ with continuous paths is called a *Brownian bridge* (from 0 to 0), if

- $\mathbb{E}[X_t] = 0$ for all $t \in [0, 1]$,
- $Cov[X_s, X_t] = s(1-t)$ for all $0 \le s \le t \le 1$.

Exercise 1 [0 Pt]

Let B be a one-dimensional Brownian motion.

1. Define $X_t = B_t - tB_1$ for all $t \in [0, 1]$. Show that X is a Brownian bridge and that X is independent of B_1 .

Hint: Linear transformations of Gaussian vectors are Gaussian.

- 2. Define $X_t = (1-t)B_{\frac{t}{1-t}}$ for all $t \in [0,1]$. Show that X is a Brownian bridge. Hint: Law of iterated logarithm.
- 3. Let X be a Brownian bridge. Show that X is the solution of the following SDE:

$$dX_{t} = -\frac{X_{t}}{1 - t}dt + dW_{t}, t \in (0, 1),$$

with $X_0 = 0$, where W is a Brownian motion.

Hint: Time-changed Brownian motion (see sheet 8,9).

Exercise 2 [0 Pt]

Let $(B_t)_{t\geq 0}$ be a standard Brownian motion on a filtered probability space $(\Omega, \mathcal{F}, (\mathcal{F}_t)_{t\geq 0}, \mathbb{P})$ and set for all $t\geq 0$:

$$H_t = \exp\left(B_t - \frac{1}{2}t\right).$$

Use Girsanov's theorem to compute $\mathbb{E}^{\mathbb{P}}[H_t \log H_t]$ for any $t \in \mathbb{R}_+$.

Exercise 3 [0 Pt]

Let $(B_t)_{t\geq 0}$ be a one-dimensional Brownian motion. In this exercise, we compute pathwise solutions of SDEs of the form

$$dX_t = f(t, X_t)dt + c(t)X_t dB_t, X_0 = x > 0,$$
 (1)

where $f: \mathbb{R}^+ \times \mathbb{R} \to \mathbb{R}$ and $c: \mathbb{R}^+ \to \mathbb{R}$ are deterministic, continuous functions. In order to solve (1), we proceed as in the *variation of constants* method, which is used to solve ODEs:

1. We know a solution Z_t of the equation with $f \equiv 0$:

$$Z_t = x \cdot e^{\int_0^t c(s)dB_s - \frac{1}{2} \int_0^t c(s)^2 ds}.$$
 (2)

2. Now for solving the equation in the general case, use the Ansatz

$$X_t = C_t \cdot Z_t,$$

where C_t is a process of finite variation.

Show that the SDE satisfied by $(C_t)_{t>0}$ has the form

$$\frac{dC_t(\omega)}{dt} = \frac{f(t, Z_t(\omega) \cdot C_t(\omega))}{Z_t(\omega)}, C_0 = 1.$$
 (3)

Hint: For each $\omega \in \Omega$, this is a deterministic differential equation for the function $t \mapsto C_t(\omega)$. We can therefore solve (3) pathwise, with ω as a parameter to find $C_t(\omega)$.

3. Let α be a constant. Apply the previous method to solve the following SDE:

$$dX_t = \frac{1}{X_t} dt + \alpha X_t dB_t, \qquad X_0 = x > 0.$$