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Exercise 1 (8 Pt
If ¢(t) = (x(t),y(t)) is a smooth curve in R? with ¢(0) = (0,0), then

A0 = [ a1 )y ds = [ty [ s

describes the area that is covered by the secant from the origin to ¢(s) in the interval [0, ¢].
Analogously, for a 2-dim BM B; = (X},Y;) with By = 0, one defines the Lévy area as

t t
Ay = / X dY, — / Y,dXs.
0 0

a) Let a(t), 3(t) be C'-functions, p € R and

V, = ipA; — @(XE +Y72) + B(1).

Show that e"* is a local martingale provided that o/(t) = «(t)? —p? and B'(t) = a(t).

b) Let tg € [0,00). The solutions of the ODE for o and 8 with «a(ty) = S(tg) = 0 are

a(t) =p-tanh(p- (ty — 1)), B(t) = —logcosh(p - (ty —1)).
Conclude that ]

E [exp (ipAy, )] = cosh(plo)’

Vp € R.

Remark: This shows that the distribution of A; is absolutely continuous with density

1

J(w) = 2t cosh (g—f) '


https://wt.iam.uni-bonn.de/florian-kreten/teaching/introduction-to-stochastic-analysis

Exercise 2 [6 Pt]

Let u, @ : R — R be bounded and twice continuously differentiable and let f € C?(R, x R)
be a bounded solution of

Of = aduf + 3OS, f(0.2) = ulx).

fit.o) =5, oo [ oo = [ atsran.) ).

where, under P,, B; is a Brownian motion starting from x.

Show that

Exercise 3 [6 Pt
Let B; be a d-dimensional Brownian motion and let (X;) = (X}, ..., X?) be a solution of
the SDE

dX; = b(X,)dt +o(X,)dB, t>0, X,=ux¢€R%

We assume (for simplicity) that b : R — R? and o : R — R4 are bounded and Lipschitz
continuous. Determine the limits

1 ) )
lim -E[X} — '],
t—0 t

and

1 N R
lim ~E[(X; — 2")(X} —27)].

Remarks:

1. o(t)dB, = (ZL Uﬂ(t)dBO

Jj=1,...,n

2. This is the reason why b is called drift vector and oo is called diffusion matrix.

Exercise 4 [Optional, 5 Pt]

Let B; be a 1-dimensional Brownian motion. Give an explicit solution (with proof) of the
following SDE:
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