

Stochastic processes

Sheet 13: repetition and mock exam

Let $(\Omega, \mathcal{F}, \mathbb{P})$ be a filtered probability space.

Exercise 1

- 1. Give the definition (or an equivalent characterization) of a familiy of uniformly integrable random variables.
- 2. Let \mathcal{C} be a family of random variables on the probability space $(\Omega, \mathcal{F}, \mathbb{P})$. Let $g : [0, \infty) \to (0, \infty)$ be such that $g(r)/r \to \infty$ as $r \to \infty$. Let $\sup_{X \in \mathcal{C}} \mathbb{E}[g(|X|)] < \infty$. Show that \mathcal{C} is uniformly integrable.
- 3. Let $(X_n)_{n\in\mathbb{N}}$ be a martingale adapted to the filtration $(\mathcal{F}_n)_{n\in\mathbb{N}}$. Let T be a stopping time such that $\mathbb{E}[|X_T|] < \infty$ and $\lim_{n\to\infty} \mathbb{E}[|X_n|\mathbb{1}_{T>n}] = 0$. Show that $(X_{T\wedge n})_{n\in\mathbb{N}}$ is uniformly integrable.

Exercise 2

Let X be a random variable on $(\Omega, \mathcal{F}, \mathbb{P})$, and let $\mathcal{G} \subset \mathcal{F}$ be a sub- σ -algebra.

- 1. Give the definition of the conditional expectation of X given \mathcal{G} .
- 2. Let T_1 and T_2 be independent exponential random variables with parameter $\alpha > 0$ and let $X = \min(T_1, T_2)$. Compute $\mathbb{E}[X|T_1]$.

Remark. Recall that the probability density function of an exponentially distributed random variable with parameter $\alpha > 0$ is given by $r \mapsto \alpha e^{-\alpha r} \mathbb{1}_{[0,\infty)}(r)$.

Exercise 3

- 1. Let T be a stopping time. Define the pre-T- σ -algebra \mathcal{F}_T .
- 2. Let $(X_n)_{n\in\mathbb{N}}$ and $(Y_n)_{n\in\mathbb{N}}$ be martingales adapted to the filtration $(\mathcal{F}_n)_{n\in\mathbb{N}}$. Let T be a stopping time such that $X_T = Y_T$. Let for all $n \in \mathbb{N}$, $Z_n = X_n \mathbb{1}_{\{T \leq n-1\}} + Y_n \mathbb{1}_{\{T \geq n\}}$. Show that $(Z_n)_{n\in\mathbb{N}}$ is a martingale adapted to the filtration $(\mathcal{F}_n)_{n\in\mathbb{N}}$.

3. Let $(B_t)_{t \in \mathbb{R}_+}$ be the one-dimensional Brownian motion starting in 0. Let $\sigma > 0$. Show that $(e^{\sigma B_t - \frac{1}{2}\sigma^2 t})_{t \in \mathbb{R}_+}$ is a martingale.

Exercise 4

- 1. State Doob's convergence theorem for super-martingales.
- 2. Let p > 1 and let $(X_n)_{n \in \mathbb{N}}$ be a martingale such that $\sup_{n \in \mathbb{N}} \mathbb{E}[|X_n|^p] < \infty$. Show that there exists a random variable X_{∞} such that $\mathbb{E}(|X_{\infty}|^p) < \infty$ and $\lim_{n \to \infty} X_n = X_{\infty}$ a.s. and in L^p .
- 3. Let $(Y_n)_{n \in \mathbb{N}_0}$ be independent standard normal random variables. Let $S_n = \sum_{i=1}^n Y_i$ and $X_n = e^{S_n - \frac{n}{2}}$ for $n \ge 1$. Prove that $\lim_{n \to \infty} X_n = 0$ a.s.

Exercise 5

Let $X_n, n \in \mathbb{N}$ be i.i.d random variables, with $\mathbb{P}(X_1 = 1) = 1/2 = \mathbb{P}(X_1 = -1)$. Let $\alpha \in \mathbb{N}$ (which implies that $\alpha > 0$). Let $S_0 = \alpha$ and $S_n = \alpha + \sum_{k=1}^n X_k$ for $n \in \mathbb{N}$.

- 1. Show that $\{S_n\}_{n\in\mathbb{N}\cup\{0\}}$ is a Markov process.
- 2. Compute the generator of S_n .
- 3. Use the martingale problem to show that $\{\frac{1}{3}S_n^3 \sum_{l=0}^n S_l\}_{n \in \mathbb{N} \cup \{0\}}$ is a martingale.
- 4. Let $\alpha < K \in \mathbb{N}$. Define the hitting times

$$\tau_0 := \inf\{n > 0 \mid S_n = 0\} \quad \text{and} \quad \tau_K := \inf\{n > 0 \mid S_n = K\}.$$

Set $\tau = \tau_0 \wedge \tau_K$. Show that $\mathbb{E}[\sum_{l=0}^{\tau} S_l] = \frac{1}{3}(K^2 - \alpha^2)\alpha + \alpha$.