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Exercise 1 [7 Pts.]

Let (Xn)n∈N be i.i.d. random variables with P(X1 = −1) = P(X1 = +1) = 1
2
. Let S0 = 0

and let Sn =
∑n

i=1Xi for all n ≥ 1. Further, define for a, b ∈ N the following hitting times

τ−a = inf{n > 0 | Sn = −a} and τb = inf{n > 0 | Sn = b}.

Set τ = τ−a ∧ τb. Prove that

1. E(τ) <∞,

2. (S2
n − n)n is a martingale,

3. E(Sτ ) = 0,

4. P(τ−a < τb) = b
a+b

, (Hint : Use the Optional Stopping Theorem!)

5. E(τ) = E(S2
τ ).

Finally, compute E(τ).

Exercise 2 [5 Pts.]

Suppose that P (x, dy) is a transition kernel on a state space (S,B). We say that a prob-
ability measure µ on (S,B) satisfies the detailed balance condition w.r.t. P if and only if
for all measurable f : S × S → R+,∫ ∫

µ(dx)P (x, dy) f(x, y) =

∫ ∫
µ(dy)P (y, dx) f(x, y).

a) Show that a measure that satisfies the detailed balance condition is invariant.
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b) Suppose that (Xn)n∈N is a stationary Markov chain with one step transition kernel
P and with initial distribution µ. Show that for all n ≥ 0, the distribution of Xn is
equal to µ.

c) Now let p ∈ (0, 1), and consider a Markov chain with state space Z+ and transition
probabilities P (x, x + 1) = p for x ≥ 0, P (x, x − 1) = q := 1 − p for x ≥ 1, and
P (0, 0) = q.

(i) Find a nontrivial invariant measure.

(ii) Show that if p < q then there is a unique invariant probability measure.

(iii) Show that if p ≥ q then an invariant probability measure does not exist.

Exercise 3 [3 Pts.]

Show that a Markov chain with stationary transition kernel P and initial distribution
P0 = π is a stationary stochastic process if and only if π is an invariant probability
distribution under P .

Exercise 4 [5 Pts.]

Let (Xn)n∈N be a Markov chain taking values in E = {0, 1, . . . , N} and with transition
matrix P given by

P (x, y) =


p if y = x+ 1
1− p if y = 0
0 otherwise

for 0 ≤ x ≤ N−1 and for 0 < p < 1. Moreover, let the state N be absorbing : P (N,N) = 1.
Define τ = inf{n ≥ 0 : Xn = N}, i.e. the first time that X reaches N .

1. Use the Markov property to prove that u(x) = Ex[τ ], x ∈ {0, 1, . . . , N} satisfies the
following equation

u(x) =

{
0 if x = N
1 +

∑
y∈E P (x, y)u(y) otherwise

2. Compute Ex[τ ].

3. How many tosses of a fair coin are necessary on average to get six heads in a row?

2


