Institute for Applied Mathematics SS 2022 Prof. Dr. Anton Bovier, Florian Kreten

Stochastic Processes Sheet 9

To hand in via ecampus before Friday, June 03

Exercise 1

[5 Pts.]

[5 Pts.]

Let $(\Omega, \mathcal{F}, \mathbb{P})$ be a probability space and let ν be a finite measure on (Ω, \mathcal{F}) such that $\nu \ll \mathbb{P}$. Let $(\mathcal{F}_n)_{n \in \mathbb{N}}$ be a filtration and for all $n \in \mathbb{N}$, let X_n be the Radon-Nikodým derivative of ν with respect to \mathbb{P} on (Ω, \mathcal{F}_n) . Show that $(X_n)_{n \in \mathbb{N}}$ is a martingale.

Exercise 2

Let $(Y_n)_{n \in \mathbb{N}_0}$ be independent standard normal random variables. Let $S_n = \sum_{i=1}^n Y_i$ and $X_n = e^{S_n - \frac{n}{2}}$ for $n \ge 1$. Prove that

- 1. $(X_n)_{n \in \mathbb{N}_0}$ is a martingale,
- 2. $\lim_{n\to\infty} X_n = 0$ a.s.
- 3. $\lim_{n\to\infty} \mathbb{E}[X_n^p] = 0$, if and only if p < 1. (Hence, although the a.s. limit of $(X_n)_n$ is in L^1 , $(X_n)_n$ does not converge to zero in L^1 .)

Exercise 3

[5 Pts.]

Let $X_n, n \in \mathbb{N}$ be a sequence of random variables. Define $\mathcal{T}_n = \sigma(X_k, k \ge n)$ and $\mathcal{T} = \bigcap_{n \in \mathbb{N}} \mathcal{T}_n$. The σ -algebra \mathcal{T} is called the *tail* σ -algebra, and elements from \mathcal{T} are called *tail events*. Furthermore, call a $\mathbb{R} \cup \{\pm \infty\}$ -valued random variable η degenerate, if there exists a $c \in \mathbb{R} \cup \{\pm \infty\}$, such that $\eta = c$ a.s.

1. Which of the following events are \mathcal{T} measurable?

$$\left\{\lim_{n \to \infty} X_n \text{ exists}\right\}, \qquad \left\{\sup_n X_n < c\right\}, \qquad \left\{\limsup_{n \to \infty} X_n < c\right\}$$
$$\left\{\sum_{n=1}^{\infty} X_n \text{ converges}\right\}, \qquad \left\{\sum_{n=1}^{\infty} |X_n| < c\right\}.$$

2. Now suppose that X_n , $n \in \mathbb{N}$ is a sequence of independent random variables. Let $S_n = \sum_{i=1}^n X_i$. Show that $\limsup_{n \to \infty} X_n$ and $\limsup_{n \to \infty} \frac{S_n}{n}$ are degenerate random variables.

Exercise 4

Let $(Y_i)_{i \in \mathbb{N}}$ be a sequence of i.i.d. random variables on the probability space (Ω, \mathcal{F}, P) , where Y_1 is not degenerate. Let $X_n := \sum_{k=1}^n Y_k$ and

$$\phi : \mathbb{R} \to \mathbb{R} \cup \{\infty\}, \quad \phi(u) = \log E[\exp(uY_1)],$$
$$\mathcal{U} := \{u \in \mathbb{R} | \phi(u) \in \mathbb{R}\}.$$

- 1. Find a function $g : \mathbb{N} \times \mathcal{U} \to \mathbb{R}$, such that $M_n(u) := \exp(uX_n g(n, u))$ is a martingale for all $u \in \mathcal{U}$.
- 2. Explain why $(M_n(u))_n$ with $u \in \mathcal{U}$ converges almost surely and verify that $0 \in \mathcal{U}$. Show that for $u \neq 0$, $\phi(tu) < t\phi(u)$ for all $t \in (0, 1)$ and that the martingale $(M_n(u))_n$ converges almost surely to zero.

Hint: To show $\phi(tu) < t\phi(u)$, ask yourself which are the only cases where equality holds in Jensen's inequality!

[5 Pts.]