Institute for Applied Mathematics SS 2022 Prof. Dr. Anton Bovier, Florian Kreten

Stochastic Processes Sheet 6

To hand in via ecampus before Friday, May 13

Exercise 1

Let $(\Omega, \mathcal{F}, \mathbb{P})$ be a probability space and let $\mathcal{G} \subset \mathcal{F}$ be a sub- σ -algebra.

1. Prove the conditional Markov inequality, i.e. show that, if $f : \mathbb{R}_+ \to \mathbb{R}_+$ is nondecreasing and such that f(|X|) is integrable, then

$$\mathbb{P}[|X| \ge \alpha |\mathcal{G}] \le \frac{1}{f(\alpha)} \mathbb{E}[f(|X|)|\mathcal{G}] \quad \mathbb{P}\text{-a.s.}$$

2. Let $\phi : \mathbb{R} \to \mathbb{R}$ be a convex function, X and $\phi(X)$ be integrable random variables. Prove the conditional Jensen inequality

$$\phi(\mathbb{E}[X|\mathcal{G}]) \le \mathbb{E}[\phi(X)|\mathcal{G}].$$

Hint: Convexity of ϕ implies that for $x, y \in \mathbb{R}$, there exists a measurable function $c : \mathbb{R} \to \mathbb{R}$ such that

$$\phi(x) \ge \phi(y) + c(y)(x - y).$$

Exercise 2

Let X be integrable and let Y be bounded and \mathcal{G} -measurable. By using the monotone class theorem, show that

$$\mathbb{E}(XY|\mathcal{G}) = Y\mathbb{E}(X|\mathcal{G}) \quad \text{a.s.}$$

Exercise 3

1. Let $(\Omega, \mathcal{F}, \mathbb{P})$ be a probability space and $\mathcal{F}_0 \subset \mathcal{F}$ be a σ -Algebra. Let $F : \mathbb{R}^2 \to [0, \infty)$ be measurable, X be a random variable independent of \mathcal{F}_0 , and Y_0 be an \mathcal{F}_0 -measurable random variable. Show that

$$\mathbb{E}[F(X,Y_0)|\mathcal{F}_0](\omega) = \int_{\Omega} F(X(\omega'),Y_0(\omega)) \mathbb{P}(d\omega') \quad \text{a.s}$$

[5 Pts.]

[4 Pts.]

[8 Pts.]

2. Let T_1 and T_2 be independent exponential random variables with parameter $\alpha > 0$ and let $X = \min(T_1, T_2)$. Compute $\mathbb{E}[X|T_1]$.

Exercise 4

[3 Pts.]

Let Y_1, Y_2, \ldots be independent and identically distributed random variables on a probability space $(\Omega, \mathcal{F}, \mathbb{P})$ with $Y_1 \in L^1(\Omega, \mathcal{F}, \mathbb{P})$. Further, let N be a non-negative integer valued random variable, independent of the Y_n 's with $\mathbb{E}[N] < \infty$. Define the random variable $X = \sum_{k=1}^N Y_k$ and compute $\mathbb{E}[X]$.