Institute for Applied Mathematics SS 2022 Prof. Dr. Anton Bovier, Florian Kreten

Stochastic Processes Sheet 5

To hand in via ecampus before Friday, May 06

Exercise 1

[6 Pts.]

Let $(\Omega, \mathcal{F}, \mathbb{P})$ be a probability space and let $\mathcal{G} \subset \mathcal{F}$ be a sub- σ -algebra. Let X and Y be absolutely integrable random variables.

- 1. Show that the map $X \to \mathbb{E}(X|\mathcal{G})$ is linear.
- 2. Show that if $\mathcal{B} \subset \mathcal{G}$ is a σ -algebra, then $\mathbb{E}[\mathbb{E}(X|\mathcal{G})|\mathcal{B}] = \mathbb{E}(X|\mathcal{B})$ a.s. (this is known as tower-property).
- 3. Show that if $X \leq Y$ a.s., then $\mathbb{E}(X|\mathcal{G}) \leq \mathbb{E}(Y|\mathcal{G})$ a.s.
- 4. Show that $|\mathbb{E}(X|\mathcal{G})| \leq \mathbb{E}(|X||\mathcal{G})$ a.s.;
- 5. Assume that there exists $n \in \mathbb{N}$ and $z_1, \ldots, z_n \in \mathbb{R}$ such that $\mathbb{P}(Y \in \{z_1, \ldots, z_n\}) = 1$ and $\mathbb{P}(Y = z_i) > 0$ for $i = 1, \ldots, n$. Compute $\mathbb{E}(X | \sigma(Y))$.

Exercise 2

[4 Pts.]

Let $\Omega = \{\omega_1, \ldots, \omega_5\}$ and let $\mathcal{F} = 2^{\Omega}$ be the power set Ω . Let \mathbb{P} be the unique probability measure such that

$$\mathbb{P}\big[\{\omega_1\}\big] = \frac{1}{10}, \quad \mathbb{P}\big[\{\omega_2\}\big] = \mathbb{P}\big[\{\omega_3\}\big] = \mathbb{P}\big[\{\omega_4\}\big] = \frac{1}{5}, \quad \mathbb{P}\big[\{\omega_5\}\big] = \frac{3}{10}$$

Consider the σ -algebra $\mathcal{F}_1 = \sigma(\{\omega_1, \omega_4\}, \{\omega_5\}, \{\omega_2, \omega_3\})$ and the random variable X defined by the following: $X(\omega_1) = 1$, $X(\omega_2) = 2$, $X(\omega_3) = 4$, $X(\omega_4) = 7$ and $X(\omega_5) = 12$. Compute $\mathbb{E}[X|\mathcal{F}_1]$.

Exercise 3

[5 Pts.]

Let \mathcal{M} be the set of all measures on the measurable space (Ω, \mathcal{A}) .

1. Let $\mu \sim \nu$, if and only if $\mu \ll \nu$ and $\nu \ll \mu$. Show that $\mu \sim \nu$ is an equivalence relation.

2. Show that for finite measures μ and ν , $\mu \sim \nu$ is equivalent to $0 < \frac{d\nu}{d\mu} < \infty \mu$ -a.e.

Exercise 4

Let (Ω, \mathcal{A}) be a measurable space, where the σ -algebra \mathcal{A} contains all points, i.e. $\{\omega\} \in \mathcal{A}$ for all $\omega \in \Omega$. Let μ and ν be finite and discrete measures on \mathcal{A} .

[5 Pts.]

- 1. Give a necessary and a sufficient condition for $\nu \ll \mu$.
- 2. Assume $\nu \ll \mu$. Calculate all densities of ν with respect to μ .

Definition: A measure μ is called *finite and discrete* if there are at most countably many $\omega_i \in \Omega$ and $p_i > 0$ with $\sum_i p_i < \infty$, such that

$$\mu = \sum_{i} p_i \delta_{\omega_i}.$$