Institute for Applied Mathematics SS 2022 Prof. Dr. Anton Bovier, Florian Kreten

# Stochastic Processes Sheet 4

#### To hand in via ecampus before Friday, April 29

#### Exercise 1

[1+1+2+2+2 Pts.]

[1+1+3 Pts.]

Let  $\mathcal{C}$  and  $\mathcal{D}$  be classes of random variables.

1. Show that C is uniformly integrable, if and only if

$$\lim_{K \to \infty} \sup_{X \in \mathcal{C}} \mathbb{E}[|X| \cdot \mathbbm{1}_{\{|X| > K\}}] = 0.$$

- 2. Show that  $\mathcal{C} + \mathcal{D} := \{X + Y, X \in \mathcal{C}, Y \in \mathcal{D}\}$  is uniformly integrable, if  $\mathcal{C}$  and  $\mathcal{D}$  are uniformly integrable.
- 3. Let  $g: [0, \infty) \to [0, \infty)$  be such that  $g(x)/x \to \infty$  as  $x \to \infty$ . If  $\sup_{X \in \mathcal{C}} \mathbb{E}[g(|X|)] < \infty$ , show that  $\mathcal{C}$  is uniformly integrable.
- 4. If there exists an integer p > 1 such that  $\sup_{X \in \mathcal{C}} \mathbb{E}[|X|^p] < \infty$ , show that  $\mathcal{C}$  is uniformly integrable.
- 5. If  $\mathbb{E}\left[\sup_{X\in\mathcal{C}}|X|\right] < \infty$ , show that  $\mathcal{C}$  is uniformly integrable.

#### Exercise 2

Let  $(\Omega, \mathcal{F}, \mathbb{P})$  be a probability space and  $Y, X, X_1, X_2, \ldots$  be random variables in  $\mathcal{L}^2(\Omega, \mathcal{F}, \mathbb{P})$ , such that  $X_n \to X$  in  $\mathcal{L}^2$ . Show that

- 1.  $\lim_{n\to\infty} \mathbb{E}[X_n Y] = \mathbb{E}[XY].$
- 2.  $\lim_{n\to\infty} \mathbb{E}[X_n^2] = \mathbb{E}[X^2].$
- 3. Let  $1 \leq p \leq q \leq \infty$ . Show that  $\mathcal{L}^p(\Omega, \mathcal{F}, \mathbb{P}) \supset \mathcal{L}^q(\Omega, \mathcal{F}, \mathbb{P})$ . Why does this not hold on arbitrary measure spaces?



## Exercise 3

Use Jensen's inequality to prove the Hölder inequal ties for  $p,q\in [1,\infty)$  such that  $\frac{1}{p}+\frac{1}{q}=1.$ 

[4 Pts.]

[3 Pts.]

### Exercise 4

Let  $\mu$  be a finite measure on a measurable space  $(\Omega, \mathcal{A})$ . Let  $f : \Omega \to \mathbb{R}$  be measurable, nonnegative and integrable. Define

$$\mu_f(A) = \int_A f \, d\mu \qquad \forall A \in \mathcal{A}.$$

Show that  $\mu_f$  is a measure on  $(\Omega, \mathcal{A})$ .