Institute for Applied Mathematics SS 2022 Prof. Dr. Anton Bovier, Florian Kreten

Stochastic Processes Sheet 3

To hand in via ecampus before Friday, April 22

Exercise 1

Let $V = \{v : \mathbb{N} \to \mathbb{R} \mid ||v|| < \infty\}$ be the metric space of uniformly bounded sequences, where $||v|| = \sup_{n \in \mathbb{N}} |v_n|$. Show that the closed unit sphere $B = \{v \in V \mid ||v|| = 1\}$ is not compact.

Exercise 2

Show that each σ -finite measure μ on some measurable space (Ω, \mathcal{F}) has a representation of the form $\mu = \sum_{n=0}^{\infty} a_n \mu_n$, where for all $n: a_n \geq 0$ is finite and μ_n is a probability measure on (Ω, \mathcal{F}) .

Exercise 3

Let $(\Omega, \mathfrak{F}, \mathbb{P})$ be a probability space and consider the associated outer measure

 $\mu^*(D) := \inf\{\mu(F) : F \in \mathfrak{F}, F \supseteq D\},\$

which is defined for all subsets of Ω . Assume that there exists a set $G \subset \Omega$ such that $\mu^*(G) = 1$, and let $\mathfrak{G} := \mathfrak{F} \cap G$ (all subsets of G of the form $G \cap A, A \in \mathfrak{F}$).

- Prove that for any $A \in \mathfrak{F} : \mu^*(G \cap A) = \mu(A)$.
- Conclude that (G, \mathfrak{G}, μ^*) is a probability space.

Exercise 4

Let $f_n, n \in \mathbb{N}$ be real valued random variables. Prove that both

$$f^+ := \limsup_{n \to \infty} f_n$$
 and $f^- := \liminf_{n \to \infty} f_n$

are measurable.

 $[3+1 \ Pkt]$

 $\begin{bmatrix} 3 \ Pkt \end{bmatrix}$

 $\begin{bmatrix} 3 \ Pkt \end{bmatrix}$

[3 Pkt]