Institute for Applied Mathematics SS 2022 Prof. Dr. Anton Bovier, Florian Kreten

Stochastic Processes Sheet 10

To hand in via ecampus before Friday, June 17

Exercise 1

[5 Pts.]

[5 *Pts.*]

1. Let $(X_n)_{n \in \mathbb{N}}$ be a submartingale such that $\mathbb{E}[e^{tX_n}] < \infty$ for all $n \in \mathbb{N}$ and for all $t \in \mathbb{R}$. Prove that

$$\mathbb{P}\left(\max_{1\leq k\leq n} X_k \geq x\right) \leq e^{-tx} \mathbb{E}[e^{tX_n}],$$

for all t > 0 and $x \in \mathbb{R}$.

2. Let $(\xi_n)_{n\in\mathbb{N}}$ be i.i.d random variables with $\mathbb{P}(\xi_1 = 1) = 1/2 = \mathbb{P}(\xi_1 = -1)$. Let $X_n = \sum_{k=1}^n \xi_k$. Prove that

$$\mathbb{P}\left(\limsup_{n \to \infty} \frac{X_n}{\sqrt{2n \log n}} \ge 1 + \epsilon\right) = 0$$

for all $\epsilon > 0$.

Hint: Use $X_n \leq \max_{1 \leq k \leq n} X_k$, part 1., the fact that $\log \cosh x \leq x^2/2$ and the Borel Cantelli lemmas.

Exercise 2

Let $(X_n)_{n \in \mathbb{N}_0}$ be integrable and i.i.d. random variables with $\mathbb{E}(X_1) = 0$. For $\alpha \in (0, 1)$ and $n \in \mathbb{N}_0$, define

$$M_n := \sum_{i=0}^n \alpha^i X_i.$$

- Show that $(M_n)_{n \in \mathbb{N}_0}$ is a martingale.
- Show that the sequence $(M_n)_{n \in \mathbb{N}_0}$ is bounded in L^1 . Deduce that $(M_n)_{n \in \mathbb{N}_0}$ converges almost surely.
- Show that $(M_n)_{n \in \mathbb{N}_0}$ converges in L^1 and determine the limit M_∞ . Further, show that $M_n = \mathbb{E}[M_\infty | \mathcal{F}_n]$.

Exercise 3

[10 Pts.]

Suppose that (Ω, \mathcal{F}, P) is a probability space and $(\mathcal{F}_n)_n$ is a filtration. Let τ , τ_1 and τ_2 be stopping times with respect to $(\mathcal{F}_n)_n$. Show that

- 1. In the definition of stopping times, one could require that $\{\tau_i \leq n\} \in \mathcal{F}_n$ for all n instead of $\{\tau_i = n\} \in \mathcal{F}_n$ for all n,
- 2. $\tau_1 + \tau_2, \tau_1 \vee \tau_2 := \max\{\tau_1, \tau_2\}, \tau_1 \wedge \tau_2 := \min\{\tau_1, \tau_2\}$ are stopping times,
- 3. \mathcal{F}_{τ} is a σ -algebra,
- 4. If $\tau_1 \leq \tau_2$, then $\mathcal{F}_{\tau_1} \subset \mathcal{F}_{\tau_2}$,
- 5. $\mathcal{F}_{\tau_1 \wedge \tau_2} = \mathcal{F}_{\tau_1} \cap \mathcal{F}_{\tau_2},$
- 6. If $F \in \mathcal{F}_{\tau_1 \vee \tau_2}$, then $F \cap \{\tau_2 \leq \tau_1\} \in \mathcal{F}_{\tau_1}$,
- 7. $\mathcal{F}_{\tau_2 \vee \tau_1} = \sigma(\mathcal{F}_{\tau_1}, \mathcal{F}_{\tau_2}),$
- 8. If X is an adapted process, then X_{τ} is \mathcal{F}_{τ} -measurable.

Exercise 4

[5 Pts.]

Let $(Y_n)_{n\in\mathbb{N}}$ be a Markov chain on the finite state space $S = \{1, \ldots, m\}$ with transition matrix $P = \{p_{ij}\}$, i.e. $\mathbb{P}(Y_{n+1} = j | Y_n = i) = p_{ij}$. Let $x = (x(j))_{j=1,\ldots,m}$ be the eigenvector of the transition matrix, i.e. there exists some $\lambda \in \mathbb{R}$ such that for all *i*:

$$\sum_{j=1}^{m} p_{ij} x(j) = \lambda x(i).$$

Let $Z_n = \lambda^{-n} x(Y_n)$. Show that $(Z_n)_{n \in \mathbb{N}}$ is a martingale with respect to the filtration $\mathcal{F}_n := \sigma(Y_1, \ldots, Y_n)$.