Institute for Applied Mathematics WS 2022/23

Prof. Dr. Anton Bovier, Florian Kreten

Sheet 9, "Introduction to Stochastic Analysis"

Due before December 16, 2022

Remark on stochastic calculus:

Regarding the cross-variation [X,Y] of two processes X and Y, you may use that

d[X,Y] = 0 if either X or Y is of bounded variation.

Think about, why this works!

Exercise 1 [3 Pt]

Show that there exists a local martingale, which is not a martingale.

Exercise 2 [6 Pt]

Let W be a standard Brownian motion and let the process Γ be the solution of

$$\Gamma_0 = 1$$
, $d\Gamma_t = \Gamma_t (\beta_t dt + \gamma_t dW_t)$.

Here β and γ are bounded, adapted processes. Assume that there is a c > 0 such that $\gamma_s > c$ for all s. Finally, let $T \in (0, \infty)$.

- (a) Show that $\Gamma_t \exp\left(-\int_0^t \beta_s ds\right)$ is a local martingale.
- (b) Find a probability measure \mathbb{Q}_T s.t. $(\Gamma_t)_{t\leq T}$ is a local martingale under \mathbb{Q}_T .
- (c) Compute $d\Gamma_t^{-1}$.
- (d) Find a probability measure \mathbb{R}_T s.t. $(\Gamma_t^{-1})_{t\leq T}$ is a local martingale under \mathbb{R}_T .

Exercise 3 [5 Pt]

Let B be standard Brownian motion on a probability space $(\Omega, \mathcal{F}, (\mathcal{F}_t), \mathbb{P})$ and \mathbb{P}^b a measure defined on \mathcal{F}_T through

$$d\mathbb{P}^b = \exp\left(-b\int_0^T B_s dB_s - \frac{b^2}{2}\int_0^T B_s^2 ds\right) d\mathbb{P}.$$

You may assume that \mathbb{P}^b is a probability measure (why is this true?).

(a) Show that the process

$$W_t = B_t + b \int_0^t B_s ds, \quad 0 \le t \le T$$

is a \mathbb{P}^b -Brownian motion.

(b) Show that

$$\int_0^t B_s dB_s = \frac{1}{2} (B_t^2 - t),$$

 \mathbb{P}^b -almost surely.

(c) Show that for all $t \leq T$:

$$\mathbb{E}_{\mathbb{P}}\left[\exp\left(-\alpha B_t^2 - \frac{b^2}{2} \int_0^t B_s^2 ds\right)\right] = \mathbb{E}_{\mathbb{P}^b}\left[\exp\left(-\alpha B_t^2 + \frac{b}{2}(B_t^2 - t)\right)\right].$$

Exercise 4 [6 Pt]

Let B be a standard Brownian motion.

(a) Let f be a continuous function on [0,1] and consider

$$Z := \int_0^1 f(s)dB_s.$$

Show that Z is a Gaussian random variable and compute the variance.

(b) Let $m \in N$ and define the following stochastic integrals:

$$A_m = \sqrt{2} \int_0^1 \cos(2\pi mt) dB_t, \quad B_m = \sqrt{2} \int_0^1 \sin(2\pi mt) dB_t.$$

Show that the following holds true for any $m \geq 1$:

- (i) $A_m, B_m \sim \mathcal{N}(0, 1)$.
- (ii) A_m and B_m are uncorrelated.