Sheet 5, "Introduction to Stochastic Analysis" Due before November 18, 2022

Exercise 1

Let T and S be \mathfrak{G}_{t+} -stopping times.

- a) If T > 0 and S > 0 prove that T + S is a \mathfrak{G}_t -stopping time.
- b) If T > 0 and T is a \mathfrak{G}_t -stopping time, prove that T + S is a \mathfrak{G}_t -stopping time.

Exercise 2

Let $(N_t)_{t\in\mathbb{R}_+}$ be the Poisson counting process with intensity $\lambda > 0$. For $a \in \mathbb{N}$, define the stopping time $T_a = \inf\{t \in \mathbb{R}_+ : N_t = a\}$. Show that

- a) T_a is almost surely finite.
- b) $\mathbb{E}[T_a] = \frac{a}{\lambda}$.
- c) $\operatorname{Var}[T_a] = \frac{a}{\lambda^2}$.

Hint: Find suitable martingales for proving b) and c).

Exercise 3

Let $(B_t)_{t \in \mathbb{R}_+}$ be one-dimensional Brownian motion.

- i) Let T be a stopping time s.t. $\mathbb{E}(T) < \infty$. Show that:
 - a) $\mathbb{E}(B_T) = 0.$ b) $\mathbb{E}(|B_T|^2) = \mathbb{E}(T).$
- ii) Let r > 0, $x \in \mathbb{R}$ and consider the stopping time $T_{x,r} := \inf\{t \in \mathbb{R}_+ : |B_t x| \ge r\}$. It holds that $\mathbb{E}(T_{x,r}) < \infty$. Show that

$$\mathbb{E}(T_{x,r}) = \begin{cases} r^2 - |x|^2 & |x| < r, \\ 0 & \text{otherwise.} \end{cases}$$

UNIVERSITÄT BONN

 $\begin{bmatrix} 5 \ Pt \end{bmatrix}$

 $\begin{bmatrix} 5 \ Pt \end{bmatrix}$

 $\begin{bmatrix} 5 \ Pt \end{bmatrix}$

Remark: $\mathbb{E}(T_{x,r}) < \infty$ can be shown easily using Lemma 4.35 in the lecture notes of Stochastic Processes.

Exercise 4

 $\begin{bmatrix} 5 \ Pt \end{bmatrix}$

Let $(B_t)_{t\geq 0}$ be a one-dimensional Brownian motion. For a,b>0 and $x\in\mathbb{R}$ we define the stopping times

$$T_x = \inf\{t \in \mathbb{R}_+ : B_t = x\}, \quad T_{a,b} = T_{-a} \wedge T_b.$$

- a) Let $\theta \ge 0$ and $X_t^{\theta,a} = \sinh(\theta(B_t + a)) \exp\left(-\frac{\theta^2}{2}t\right)$. Show that $(X_t^{\theta,a})$ is a martingale.
- b) Let $\lambda \geq 0$. Show that

$$\mathbb{E}\left[\exp\left(-\lambda T_{a,b}\right)\right] = \frac{\cosh\left(\frac{a-b}{2}\sqrt{2\lambda}\right)}{\cosh\left(\frac{a+b}{2}\sqrt{2\lambda}\right)}.$$

Hint: Consider $X_t^{\theta,a}$ and $X_t^{\theta,-b}$ and use optional sampling. The following identities might be useful:

$$\sinh(x) + \sinh(y) = 2\sinh(\frac{x+y}{2})\cosh(\frac{x-y}{2}),$$
$$\sinh(2x) = 2\sinh(x)\cosh(x).$$