Sheet 12, "Introduction to Stochastic Analysis"

Due before January 20, 2022

Definition. A (only for simplicity one-dimensional) Gaussian process $X=\left(X_{t}\right)_{t \in[0,1]}$ with continuous paths is called a Brownian bridge (from 0 to 0), if

- $\mathbb{E}\left[X_{t}\right]=0$ for all $t \in[0,1]$,
- $\operatorname{Cov}\left[X_{s}, X_{t}\right]=s(1-t)$ for all $0 \leq s \leq t \leq 1$.

Exercise 1

Let B be a one-dimensional Brownian motion.

1. Define $X_{t}=B_{t}-t B_{1}$ for all $t \in[0,1]$. Show that X is a Brownian bridge and that X is independent of B_{1}.

Hint: Linear transformations of Gaussian vectors are Gaussian.
2. Define $X_{t}=(1-t) B_{\frac{t}{1-t}}$ for all $t \in[0,1)$, and $X_{1}=0$. Show that X is a Brownian bridge.
Hint: Law of iterated logarithm.
3. Let X be a Brownian bridge. Show that X is the solution of the following SDE:

$$
d X_{t}=-\frac{X_{t}}{1-t} d t+d W_{t}, t \in(0,1)
$$

with $X_{0}=0$, where W is a Brownian motion.
Hint: Time-changed Brownian motion (see sheet 8,9).

Exercise 2

Let $\left(B_{t}\right)_{t \geq 0}$ be a standard Brownian motion on a filtered probability space $\left(\Omega, \mathcal{F},\left(\mathcal{F}_{t}\right)_{t \geq 0}, \mathbb{P}\right)$ and set for all $t \geq 0$:

$$
H_{t}=\exp \left(B_{t}-\frac{1}{2} t\right) .
$$

Use Girsanov's theorem to compute $\mathbb{E}^{\mathbb{P}}\left[H_{t} \log H_{t}\right]$ for any $t \in \mathbb{R}_{+}$.

Exercise 3

Let $\left(B_{t}\right)_{t \geq 0}$ be a one-dimensional Brownian motion. In this exercise, we compute pathwise solutions of SDEs of the form

$$
\begin{equation*}
d X_{t}=f\left(t, X_{t}\right) d t+c(t) X_{t} d B_{t}, \quad X_{0}=x>0 \tag{1}
\end{equation*}
$$

where $f: \mathbb{R}^{+} \times \mathbb{R} \rightarrow \mathbb{R}$ and $c: \mathbb{R}^{+} \rightarrow \mathbb{R}$ are deterministic, continuous functions. In order to solve (1), we proceed as in the variation of constants method, which is used to solve ODEs:

1. We know a solution Z_{t} of the equation with $f \equiv 0$:

$$
\begin{equation*}
Z_{t}=x \cdot e^{\int_{0}^{t} c(s) d B_{s}-\frac{1}{2} \int_{0}^{t} c(s)^{2} d s} . \tag{2}
\end{equation*}
$$

2. Now for solving the equation in the general case, use the Ansatz

$$
X_{t}=C_{t} \cdot Z_{t},
$$

where C_{t} is a process of finite variation.
Show that the SDE satisfied by $\left(C_{t}\right)_{t \geq 0}$ has the form

$$
\begin{equation*}
\frac{d C_{t}(\omega)}{d t}=\frac{f\left(t, Z_{t}(\omega) \cdot C_{t}(\omega)\right)}{Z_{t}(\omega)}, C_{0}=1 . \tag{3}
\end{equation*}
$$

Hint: For each $\omega \in \Omega$, this is a deterministic differential equation for the function $t \mapsto C_{t}(\omega)$. We can therefore solve (3) pathwise, with ω as a parameter to find $C_{t}(\omega)$.
3. Let α be a constant. Apply the previous method to solve the following SDE:

$$
d X_{t}=\frac{1}{X_{t}} d t+\alpha X_{t} d B_{t}, \quad X_{0}=x>0
$$

The following exercise will not be discussed in the tutorial classes:

Exercise 4

Let B_{t} be a 1-dimensional Brownian motion. Give an explicit solution (with proof) of the following SDE:

$$
d X_{t}=\frac{1}{2} X_{t} d t+\sqrt{1+X_{t}^{2}} d B_{t} .
$$

