Florian Kreten

Sheet 1, "Introduction to Stochastic Analysis"

Due before October 21, 2022
Details about the electronic submission in the exercise classes

Exercise 1

Consider a random variable X_{1} with a $\mathcal{N}(0,1)$ distribution. Let Y be another random variable which is independent of X_{1} and for which we have $\mathbb{P}(Y=1)=\frac{1}{2}=\mathbb{P}(Y=-1)$. Further, define $X_{2}:=Y \cdot X_{1}$. Clearly, X_{2} has a $\mathcal{N}(0,1)$ distribution. Show that the following statements hold:

1. X_{1} and X_{2} are uncorrelated but not independent.
2. $\left(X_{1}, X_{2}\right)$ does not have a two-dimensional Gaussian distribution.

Definition

A process $\left(B_{t}\right)_{t \in \mathbb{R}_{+}}$that is adapted to a filtration $\left(\mathcal{F}_{t}\right)_{t \geq 0}$ is called (standard) Brownian motion if it has the following properties:

- $B_{0}=0$ a.s.
- B has independent increments: for every $t>s \geq 0, W_{t}-W_{s}$ is independent of \mathcal{F}_{s}
- B has Gaussian increments: for $u \geq 0, B_{t+u}-B_{t}$ is normally distributed with mean 0 and variance u.
- For almost all ω, the path $\left(B_{t}\right)_{t \in \mathbb{R}_{+}}(\omega)$ is continuous in t (B is a.s. continuous)

Exercise 2

Show that $\left(B_{t}\right)_{t \in \mathbb{R}_{+}}$is the one-dimensional Brownian motion, if and only if $\left(B_{t}\right)_{t \in \mathbb{R}_{+}}$is a centered Gaussian process with continuous paths and such that $\operatorname{Cov}\left(B_{t}, B_{s}\right)=t \wedge s$ for all $s, t \geq 0$.

Hint: take a look at section 3 in the script of Stochastic Processes.

Exercise 3

$\left[\begin{array}{ll}6 P t\end{array}\right]$
Let $\left(B_{t}\right)_{t \in \mathbb{R}_{+}}$be the Brownian motion. Define the processes $\left(B_{t}^{(1)}\right)_{t \in \mathbb{R}_{+}},\left(B_{t}^{(2)}\right)_{t \in \mathbb{R}_{+}},\left(B_{t}^{(3)}\right)_{t \in \mathbb{R}_{+}}$ by

1. $B_{t}^{(1)}=-B_{t}$,
2. $B_{t}^{(2)}=B_{t+r}-B_{r}$ for some $r>0$,
3. $B_{t}^{(3)}=\frac{1}{c} B_{c^{2} t}$ for some $c>0$.

Show that $\left(B_{t}^{(1)}\right)_{t \in \mathbb{R}_{+}},\left(B_{t}^{(2)}\right)_{t \in \mathbb{R}_{+}},\left(B_{t}^{(3)}\right)_{t \in \mathbb{R}_{+}}$are Brownian motions as well.

Exercise 4

Let $\left(B_{t}, t \in \mathbb{R}_{+}\right)$be a (one-dimensional) standard Brownian motion.

1. Let $Z:=\sup _{t \geq 0} B_{t}$. Show that $c Z \stackrel{(d)}{=} Z$ for all $c>0$ (i.e., $c Z$ and Z have the same laws). Conclude that the law of Z is concentrated on $\{0, \infty\}$.
2. Show that $\mathbb{P}(Z=0) \leq \mathbb{P}\left(B_{1} \leq 0\right) \mathbb{P}\left(\sup _{t \geq 0}\left(B_{1+t}-B_{1}\right)=0\right)$ and conclude that $\mathbb{P}(Z=0)=0$.
3. Conclude that $\mathbb{P}\left(\sup _{t \geq 0} B_{t}=+\infty, \inf _{t \geq 0} B_{t}=-\infty\right)=1$. In other words, paths of the Brownian motion oscillate a.s. infinitely often between $+\infty$ and $-\infty$.
Another proof of this fact goes through the so-called "law of the iterated logarithm", but it is way less elementary!
