Institut für Angewandte Mathematik WS 2021/22

Prof. Dr. Anton Bovier, Florian Kreten

Einführung in die Wahrscheinlichkeitstheorie 8. Übungsblatt

Abgabe über ecampus bis Freitag, 10.12.2021, 0:00

Aufgabe 1 [4 Pkt]

Sei P ein Wahrscheinlichkeitsmaß auf $\mathbb R$ mit $\int_{\mathbb R} |x| dP(x) < \infty$. Zeigen Sie, dass

$$\frac{d}{dt} \int_{\mathbb{R}} \cos(xt) dP(x) = -\int_{\mathbb{R}} x \sin(xt) dP(x).$$

Hinweis: Wenn Sie Satz 6.3 aus der Vorlesung anwenden möchten, dann müssen Sie ihn zunächst beweisen.

Aufgabe 2 [3+2 Pkt]

1. Es seien X und Y unabhängige, standard Gauss-verteilte (d.h. $\mathcal{N}(0,1)$) Zufallsvariablen. Zeigen Sie, dass die Zufallsvariable

$$Z = \begin{cases} \frac{X}{Y} & : Y \neq 0\\ 0 & : Y = 0 \end{cases}$$

Cauchy verteilt ist mit Parameter 1.

2. Es sei U eine auf $\left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$ gleichverteilte Zufallsvariable. Zeigen Sie, dass $\tan(U)$ Cauchy verteilt ist mit Parameter 1.

Aufgabe 3 [3+2 Pkt]

Sei $(\Omega, \mathcal{A}, \mathbb{P})$ ein Wahrscheinlichkeitsraum und $X, X_1, X_2, \ldots : (\Omega, \mathcal{A}) \to (\mathbb{R}^k, \mathcal{B}^k), k \in \mathbb{N}$ messbar. Man sagt, dass die Folge (X_n) in Wahrscheinlichkeit gegen X konvergiert und schreibt $X_n \stackrel{P}{\longrightarrow} X$, falls für jedes $\varepsilon > 0$

$$\mathbb{P}(||X_n - X|| > \varepsilon) \to 0 \quad \text{für } n \to \infty,$$

wobei $\|\cdot\|$ eine beliebige Norm auf \mathbb{R}^k ist. Beweisen Sie:

1. Sei $c \in \mathbb{R}^k$ und $f : \mathbb{R}^k \to \mathbb{R}^m$ stetig an der Stelle c. Gilt $X_n \stackrel{P}{\longrightarrow} c$, so gilt auch $f(X_n) \stackrel{P}{\longrightarrow} f(c)$.

2. Es seien $X_n = (X_n^1, \dots, X_n^k)$ und $X = (X_n^1, \dots, X_n^k)$. Die Aussage $(X_n^1, \dots, X_n^k) \xrightarrow{P} (X_n^1, \dots, X_n^k)$ gilt genau dann, wenn $X_n^i \xrightarrow{P} X_n^i$ für alle $i \in \{1, \dots, k\}$.

Bemerkung: Aussage 1 bleibt erfüllt, wenn man c durch einen Zufallsvektor X ersetzt und die Menge der Unstetigkeitsstellen der Funktion f eine P_X -Nullmenge darstellt.

Aufgabe 4 [3+2+1 Pkt]

Es seien X, X_1, X_2, \ldots reellwertige Zufallsvariablen. Zeigen Sie:

- 1. Aus $X_n \xrightarrow{P} X$ folgt $X_n \xrightarrow{\mathcal{D}} X$, d.h. Konvergenz in Wahrscheinlichkeit impliziert Konvergenz in Verteilung.
- 2. Ist X P-f.s. konstant, so gilt auch die Umkehrung: $X_n \stackrel{\mathcal{D}}{\longrightarrow} X$ impliziert $X_n \stackrel{P}{\longrightarrow} X$.
- 3. Aus $(X_n X)^2 \xrightarrow{P} 0$ folgt $X_n \xrightarrow{P} X$.