Institut für Angewandte Mathematik WS 2021/22

Prof. Dr. Anton Bovier, Florian Kreten

Einführung in die Wahrscheinlichkeitstheorie 7. Übungsblatt

Abgabe über ecampus bis Freitag, 03.12.2021, 0:00

Aufgabe 1 [1 Pkt]

Seien X_1, \ldots, X_n unabhängig und exponentialverteilt mit jeweiligem Parameter $\alpha_i > 0$. Bestimmen Sie die Verteilung von $\min_{1 \le i \le n} X_i$.

Aufgabe 2 [3+4 Pkt]

Sei X eine zentrierte Gauss'sche Zufallsvariable mit Varianz $\sigma^2 > 0$:

1. Sei $g \in C^1(\mathbb{R})$ so, dass $|g(x)|e^{-x^2/(2a)} \to 0$ und $|g'(x)|e^{-x^2/(2a)} \to 0$, wenn $x \to \pm \infty$ für ein a > Var(X). Beweisen Sie, dass

$$\mathbb{E}(Xg(X)) = \operatorname{Var}(X)\mathbb{E}(g'(X))$$

gilt.

2. Berechnen Sie $\mathbb{E}(X^n)$ für alle $n \in \mathbb{N}$.

Aufgabe 3 [4 Pkt]

Sei X eine positive Zufallsvariable (diskret oder kontinuierlich) auf dem Wahrscheinlichkeitsraum $(\Omega, \mathcal{F}, \mathbb{P})$, und sei $g : [0, \infty) \to [0, \infty)$ bijektiv, stetig differenzierbar und streng monoton wachsend mit g(0) = 0. Zeigen Sie, dass

$$\mathbb{E}[g(X)] = \int_0^\infty g'(x) \mathbb{P}[X \ge x] dx.$$

Hinweis: Es darf ohne Beweis vorausgesetzt werden, dass Fubini-Tonelli für σ -endliche Maße gilt.

Aufgabe 4 [1+4 Pkt]

Sei $p \in (0,1)$ und seien $(X_i)_i$ i.i.d. Zufallsvariablen mit $\mathbb{P}(X_i = 1) = p = 1 - \mathbb{P}(X_i = -1)$. Es sei $S_n = \sum_{i=1}^n X_i$ und $K(n) = K(0) + S_n$. Wir definieren

$$h(x) = \mathbb{P}\Big(\inf\{n : K(n) = 0\} < \inf\{n : K(n) = 100\} \Big| K(0) = x\Big),$$

für $x \in \{1, ..., 98, 99\}, h(0) = 1 \text{ und } h(100) = 0.$

1. Zeigen Sie, dass

$$h(x) = ph(x+1) + (1-p)h(x-1), \quad x \in \{1, \dots, 99\},$$

2. Berechnen Sie h(x).

Tipp zu Punkt 2: Leiten Sie eine rekursive Gleichung für g(x) := h(x+1) - h(x) her!

Aufgabe 5 [3 Pkt]

Sei $(X_k)_{k\in\mathbb{N}}$ eine Folge von unabhängigen, zum Parameter λ exponentialverteilten Zufallsvariablen. Sei für $t\geq 0$

 $N_t = \sup \left\{ n \in \mathbb{N}_0 : \sum_{k=1}^n X_k \le t \right\}.$

Zeigen Sie, dass für alle $t>0,\,N_t$ Poisson-verteilt ist zum Parameter $\lambda t.$

Bemerkung: Die Familie $(N_t)_{t\geq 0}$ nennt man auch Poisson-Prozess mit Intensität λ .