Institut für Angewandte Mathematik WS 2021/22

Prof. Dr. Anton Bovier, Florian Kreten

Einführung in die Wahrscheinlichkeitstheorie 4. Übungsblatt

Abgabe über ecampus bis Freitag, 12.11.2021, 0:00

Definition. Sei $Y : \Omega \to \mathbb{R}$ eine integrierbare Zufallsvariable auf dem Wahrscheinlichkeitsraum $(\Omega, \mathcal{F}, \mathbb{P})$. Dann ist $\mathbb{E}[Y]$ - der *Erwartungswert* von Y - definiert durch

$$\mathbb{E}[Y] \ = \ \int_{\Omega} Y(\omega) \, d\mathbb{P}(\omega).$$

Aufgabe 1 [6 Pkt]

Sei $(\Omega, \mathcal{F}, \mathbb{P})$ ein Wahrscheinlichkeitsraum und sei $X : \Omega \to \mathbb{R}$ eine Zufallsvariable. Nehmen Sie an, dass die Verteilung von X absolut stetig ist, und sei ρ die zugehörige Wahrscheinlichkeitsdichte. Des Weiteren sei $g : \mathbb{R} \to \mathbb{R}$ eine messbare Funktion mit der Eigenschaft, dass $g \circ X$ integrierbar ist. Zeigen Sie, dass

$$\mathbb{E}[g(X)] = \int_{\mathbb{R}} g(x) \, \rho(x) \, dx.$$

Hinweis: Verwenden Sie das Konzept der Maßtheoretischen Induktion, basierend auf den zentralen Schritten aus Kapitel 2.2.2 im Skript.

Sei X_p geometrisch verteilt mit Parameter p, d.h. für $k \in \mathbb{N}_0$ gilt $P[X_p = k] = (1 - p)p^k$. Betrachten Sie die Zufallsvariable

$$Y_p := (1 - p)X_p.$$

Beweisen Sie, dass im Limes $p \to 1$ die Verteilungsfunktion von Y_p punktweise gegen die Verteilungsfunktion der Exponentialverteilung mit Rate $\lambda = 1$ konvergiert. Für $\lambda > 0$ ist die Verteilungsfunktion F(x) der Exponentialverteilung gegeben durch

$$F(x) := \begin{cases} 1 - e^{-\lambda x} & \text{für } x > 0, \\ 0 & \text{für } x \le 0. \end{cases}$$

Aufgabe 3 [4 Pkt]

Es sei U eine auf dem offenen Intervall (0,1) uniform verteilte Zufallsvariable, d.h. mit Dichte $g_u(x) = \mathbb{1}_{(0,1)}(x), x \in \mathbb{R}$. Zeigen Sie: Ist $F : \mathbb{R} \to (0,1)$ eine stetige, streng monoton wachsende und surjektive Funktion, so ist F die Verteilungsfunktion der durch $X := F^{-1}(U)$ definierten Zufallsvariablen. Dabei ist $F^{-1} : (0,1) \to \mathbb{R}$ die zu F inverse Funktion.

Aufgabe 4 [6 Pkt]

Sei $-\infty < a < b < \infty$ und $f:[a,b] \to \mathbb{R}$ eine stetige Funktion. Zeigen Sie, dass f Lebesgueintegrierbar ist, und dass das Riemann- und das Lebesgue-Integral übereinstimmen.

Hinweis: Diese Aussage gilt für alle Riemann-integrierbaren Funktionen, der Beweis ist im Wesentlichen identisch. Eine Funktion ist Riemann-integrierbar, wenn das Infimum der Obersummen und das Supremum der Untersummen übereinstimmen.