Institut für Angewandte Mathematik WS 2021/22

Prof. Dr. Anton Bovier, Florian Kreten

Einführung in die Wahrscheinlichkeitstheorie 3. Übungsblatt

Abgabe über ecampus bis Freitag, 05.11.2021, 0:00

Aufgabe 1 [2+2 Pkt]

1. Seien $(X_n)_{n\in\mathbb{N}}$ reellwertige Zufallsvariablen. Zeigen Sie, dass die beiden Abbildungen

$$\sup_{n\in\mathbb{N}} X_n \quad \text{und} \quad \liminf_{n\to\infty} X_n$$

messbar sind.

2. Sei X eine Zufallsvariable mit Verteilungfunktion F_X und $a, b \in \mathbb{R}$. Man bestimme die Verteilungsfunktionen der folgenden Zufallsvariablen:

$$Y_1 = aX + b,$$
 $Y_2 = |X|,$ $Y_3 = e^X.$

Aufgabe 2 [2+1+2+1 Pkt]

Es sei (A_n) eine Folge von Teilmengen einer beliebigen nichtleeren Menge Ω . Der *obere* und der *untere Limes* der Mengenfolge (A_n) werden definiert durch

$$\limsup_{n} A_{n} = \bigcap_{n=1}^{\infty} \bigcup_{k=n}^{\infty} A_{k} \quad \text{bzw.} \quad \liminf_{n} A_{n} = \bigcup_{n=1}^{\infty} \bigcap_{k=n}^{\infty} A_{k}.$$

Stimmen beide Mengen überein, so schreibt man

$$\lim_{n\to\infty} A_n = \limsup_n A_n = \liminf_n A_n.$$

Zeigen Sie:

1. Mit dem Ereignis $\liminf_n A_n$ tritt auch das Ereignis $\limsup_n A_n$ ein, d.h. es gilt

$$\liminf_{n} A_n \subseteq \limsup_{n} A_n.$$

Geben Sie ein Beispiel für strikte Inklusion an,

2.
$$\limsup_{n} A_n^c = (\liminf_{n} A_n)^c$$
,

- 3. $\limsup_{n} (A_n \cap B_n) \subset (\limsup_{n} A_n \cap \limsup_{n} B_n)$; geben Sie ein Beispiel für strikte Inklusion an,
- 4. Für monotone Mengenfolgen (d.h. $A_1 \subset A_2 \subset A_3 \subset \cdots$ oder $A_1 \supset A_2 \supset A_3 \supset \cdots$) sind der obere und der untere Limes gleich.

Aufgabe 3 [2 Pkt]

Sei λ das Lebesgue-Maß auf [0,1]. Betrachten Sie den zugehörigen Wahrscheinlickeitsraum ($[0,1], \mathcal{B}([0,1]), \lambda$). Wir konstruieren eine Folge $\{C_n\}_{n\in\mathbb{N}}$ von abgeschlossenen Mengen nach folgendem Muster:

$$C_1 = \left[0, \frac{1}{3}\right] \cup \left[\frac{2}{3}, 1\right]$$

$$C_2 = \left[0, \frac{1}{9}\right] \cup \left[\frac{2}{9}, \frac{3}{9}\right] \cup \left[\frac{6}{9}, \frac{7}{9}\right] \cup \left[\frac{8}{9}, 1\right]$$

Die Menge C_n ist die Vereinigung von 2^n disjunkten, abgeschlossenen Intervallen der Länge 3^{-n} . Die Menge C_{n+1} konstruieren wir aus der Menge C_n , indem wir das mittlere Drittel jedes Intervals aus C_n entfernen.

Sei $C = \bigcap_{n=1}^{\infty} C_n$. Man nennt C die Cantormenge. Zeigen Sie, dass die Cantormenge eine nichtleere, abgeschlossene Menge vom Lebesgue-Maß 0 ist.

Aufgabe 4

[Freiwillige Aufgabe, 3+2+2+1 Pkt]

Sei $(C_n)_n$ die selbe Mengenfolge wie in der vorigen Aufgabe. Für alle $n \in \mathbb{N}$ definieren wir eine nichtfallende, stetige Funktion F_n auf [0,1] wie folgt:

- 1. $F_n(0) = 0$ und $F_n(1) = 1$;
- 2. Die Funktion F_n ist in jedem Teilintervall von $[0,1] \setminus C_n$ konstant und nimmt die Werte $\frac{1}{2^n}, \frac{2}{2^n}, \dots, \frac{2^n-1}{2^n}$ in aufsteigender Reihenfolge an.
- 3. In allen Intervallen von C_n ist F_n linear.

Zeigen Sie:

- (i) Die Funktionenfolge F_n konvergiert gleichmäßig gegen eine Funktion F.
- (ii) F ist eine stetige Verteilungsfunktion auf [0, 1].
- (iii) Das durch F eindeutig bestimmte Wahrscheinlichkeitsmaß hat keine Dichte.
- (iv) Das durch F eindeutig bestimmte Wahrscheinlichkeitsmaß hat keine Atome.

Hinweise:

- Betrachten Sie den vollständigen, normierten Raum C([0,1]) der stetigen Funktionen auf [0,1] mit der Norm $||f||_{\infty} = \max_{0 \le x \le 1} |f(x)|$.
- Ein Atom ist ein Punkt mit positivem Maß.