Lecture 8: Exercises

Exercise 8.1 (Liouville property and weak maximum principle). Let (b,c) be a graph over (X,m) with formal Laplacian $\mathcal{L} = \mathcal{L}_{b,c,m}$. Show that following are equivalent:

- (i) The graph has the Liouville property, i.e., all non-negative superharmonic functions are constant.
- (ii) The graph satisfies the weak maximum principle, i.e., if for every non-constant, bounded above function $u \in \mathcal{F}$ and for every $\gamma < \sup_{x} u$, we have

$$\sup_{X_{\gamma}} \mathcal{L}u > 0$$

on the superlevel set $X_{\gamma} := \{x \in X : u(x) > \gamma\}.$

Exercise 8.2 (ℓ^{∞} -Liouville property and Omori-Yau maximum principle). Let (b,c) be a graph over (X,m) with formal Laplacian $\mathcal{L} = \mathcal{L}_{b,c,m}$. Show that following are equivalent:

- (i) The graph has the ℓ^{∞} -Liouville property, i.e., for every $\alpha > 0$, every bounded non-negative function $u \in \mathcal{F}$ such that $(\mathcal{L} + \alpha)u \leq 0$ is trivial.
- (ii) There exists $\alpha > 0$ such that every bounded non-negative function $u \in \mathcal{F}$ with $(\mathcal{L} + \alpha)u \leq 0$ is trivial.
- (iii) The graph satisfies the Omori-Yau maximum principle, i.e., if for every $u \in \mathcal{F}$ with $\sup_{\mathbf{x}} u \in (0, \infty)$, and $\gamma < \sup_{\mathbf{x}} u$, we have

$$\sup_{\mathsf{X}_{\gamma}} \mathcal{L} \mathsf{u} > \mathsf{o}$$

on the superlevel set $X_{\gamma} := \{x \in X : u(x) > \gamma\}.$

Exercise 8.3. (a) Show that every finite (b, c) with c = 0 satisfies both the Liouville and the ℓ^{∞} -Liouville property.

- (b) Find examples of infinite graphs which have and do not have the Liouville property.
- (c) Find examples of infinite graphs which have and do not have the ℓ^∞ -Liouville property.