Lecture 7: Exercises

Let (b, c) be a graph over the infinite discrete measure space (X, m). Recall that we denote the space of functions of finite energy by \mathcal{D} with associated energy functional \mathcal{Q} , and we set $\ell^2 := \ell^2(X, m)$. We define

$$\|\cdot\|_{\mathcal{Q}}\colon \mathcal{D}\cap\ell^2 o [\mathsf{o},\infty)$$
, $\|f\|_{\mathcal{Q}}\coloneqq \left(\mathcal{Q}(f)+\|f\|^2
ight)^{1/2}$,

which is a norm.

Define a form $Q^{(N)}: D(Q^{(N)}) \times D(Q^{(N)}) \to \mathbb{R}$ with domain $D(Q^{(N)}):=\mathcal{D} \cap \ell^2$, acting via

$$Q^{(N)}(f,g) := \mathcal{Q}(f,g), \qquad f,g \in D(Q^{(N)}),$$

and extended to ℓ^2 on the diagonal via $Q^{(N)}(f) := \mathcal{Q}(f,f), f \in D(Q^{(N)})$, and $Q^{(N)}(f) := \infty, f \in \ell^2 \setminus D(Q^{(N)})$. We call this functional the *maximal form*, or Neumann (boundary) form.

Define a form $Q^{(D)}: D(Q^{(D)}) \times D(Q^{(D)}) \to \mathbb{R}$ with domain $D(Q^{(D)}):=\overline{C_c(X)}^{\|\cdot\|_{\mathcal{Q}}}$, acting via

$$Q^{(D)}(f,g) := \mathcal{Q}(f,g), \qquad f,g \in D(Q^{(D)}),$$

and extended to ℓ^2 on the diagonal via $Q^{(D)}(f) := \mathcal{Q}(f,f), f \in D(Q^{(D)})$, and $Q^{(D)}(f) := \infty, f \in \ell^2 \setminus D(Q^{(D)})$. We call this functional the *minimal form*, or Dirichlet boundary form.

Exercise 7.1. (a) Show that $Q^{(N)}$ and $Q^{(D)}$ are closed forms.

- (b) Under the additional assumptions c = 0, m(X) = 1, and $\lambda_0 = \inf\{Q^{(D)}(f) : f \in D(Q^{(D)}), ||f|| = 1\} > 0$, show that $Q^{(D)} \neq Q^{(N)}$.
- (c) Under the additional assumption that the weighted degree

$$\operatorname{Deg}_c\colon X\to [0,\infty), \qquad \operatorname{Deg}_c(x):=\frac{1}{m(x)}\left(\sum_{y\in X}b(x,y)+c(x)\right)$$

is bounded, show that $Q^{(D)} = Q^{(N)}$.

Exercise 7.2. Let $p \in [1, \infty]$.

- (a) Show the equivalence of the following statements:
 - (i) $C_c(X)$ is dense in $\ell^p(X, m)$,
 - (ii) $p \in [1, \infty)$.
- (b) Show the equivalence of the following statements for $p \in [1, \infty)$:
 - (i) $\ell^p(X,m) \subset \ell^\infty(X)$,
 - (ii) $\ell^p(X,m) \subseteq C_o(X) := \overline{C_c(X)}^{\|\cdot\|_{\ell^\infty}}$, i.e., $C_o(X)$ is the space of continuous functions vanishing at infinity,
 - (iii) There exists $\alpha > 0$ such that $m \ge \alpha$.
- (c) Show the equivalence of the following statements for $p \in [1, \infty)$:
 - (i) $\ell^p(X, m) \supseteq \ell^\infty(X)$,
 - (ii) $m(X) < \infty$.