Lecture 4: Exercises

Exercise 4.1. Let \mathcal{F} be the domain of the formal Laplacian $\mathcal{L} = \mathcal{L}_{b,c,m}$ associated with a graph (b,c) over (X,m). Show that the following statements are equivalent:

- (i) The graph is locally finite.
- (ii) $\mathcal{L}C_c(X) \subseteq C_c(X)$.
- (iii) $C(X) = \mathcal{F}$.

Exercise 4.2. Let $A: C_c(X) \to C_c(X)$ be a symmetric linear operator, i.e.,

$$A_{1_X}(y) = A_{1_Y}(x)$$
 for all $x, y \in X$.

Show the following equivalence:

- (i) $A = \mathcal{L}_{b,c,m}$ on $C_c(X)$ for a locally finite graph (b,c) over (X,m).
- (ii) A satisfies a maximum principle, i.e., if $f \in C_c(X)$ has a non-negative local maximum in $x \in X$, then

$$\mathcal{A}f(x) > 0$$
.

Exercise 4.3. Let X be a countable set, $b: X \times X \to [0, \infty)$, and define $\mathcal{Q}: C(X) \to [0, \infty)$ by

$$Q(f) = \frac{1}{2} \sum_{x,y \in X} b(x,y) \big(f(x) - f(y) \big)^2.$$

Show the following equivalence:

- (i) $Q(\varphi) < \infty$ for all $\varphi \in C_c(X)$.
- (ii) $\sum_{y \in X} b(x, y) < \infty$ for all $x \in X$.