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Introduction

Motivation

Goal : to study the electronic transport in disordered materials and identify if
a material is a conductor or an insulator

Quantum mechanics setting :

physical state

physical observables

possible outcomes

a vector ψ in a Hilbert space H , with ‖ψ‖= 1

self-adjoint operator H

σ(H) spectrum of the operator H
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Introduction

Dynamics of a particle moving in a material : ψ ∈H = L2(Rd ) or `2(Zd ),
‖ψ‖= 1,

∂t ψ(t,x) =−iHψ(t,x),

ψ(t,x) = e−itH
ψ(0,x),

where H = H0 + V is a self-adjoint Schrödinger operator on H .

Example : electrons in a crystal, H =−∆ + V acting on `2(Zd ), the potential
Vψ(x) = q(x)ψ(x), where q is a periodic function.

extended states

band a.c. spectrum

extended states ∼ ψ(t,x) propagate in space as t grows ∼ transport
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Introduction

Dynamics of a particle moving in a material : ψ ∈H = L2(Rd ) or `2(Zd ),
‖ψ‖= 1,

∂t ψ(t,x) =−iHψ(t,x),

ψ(t,x) = e−itH
ψ(0,x),

where H = H0 + V is a self-adjoint Schrödinger operator on H .

Example : electrons in a disordered crystal

ψ(t,x) do not propagate in space as t grows ∼ absence of transport
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Introduction

Disordered media

P. W. Anderson 1958 :
if the medium has impurities, there is no wave propagation.
“Absence of diffusion in certain random lattices”, Phys. Rev. (Nobel 1977)

Anderson model : Hω =−∆ + Vω on `2(Zd ), with

Vω(x) = ∑
j∈Zd

ωjδj (x),

where ω = (ωj )j∈Zd is a random variable in a probability space (Ω,P).

Localization : first rigorous mathematical results in the late 70s, early 80s.
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Introduction

Recall from spectral theory

For a self-adjoint operator H and a vector ϕ ∈H , there exists a spectral
measure µH,ϕ such that

〈ϕ,Hϕ〉=
∫
R

λdµH,ϕ(λ)

or, formally

H =
∫
R

λdµH,ϕ(λ).

For this spectral measure µ = µH,ϕ one has the usual Lebesgue
decomposition into three mutually singular parts

µ = µpp + µsc + µac

which induces a decomposition of the Hilbert space H = Hpp⊕Hsc⊕Hac ,
such that

HH∗ =
∫
R

λdµ∗H,ϕ(λ), ∗ ∈ pp,sc,ac
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Introduction

Then, writing
σ∗(H) = σ(HH∗), ∗ ∈ pp,sc,ac

we have the following decomposition for the spectrum

σ(H) = σpp(H)∪σsc(H)∪σac(H)

***

Going back to the Anderson model (Hω)ω∈Ω,

• We say that the operator Hω exhibits spectral localization in an interval J
if σ(H)∩ I = σpp(H)∩ I , almost surely.

• We say that H exhibits Anderson localization (AL) in I if
σ(H)∩ I = σpp(H)∩ I with exponentially decaying eigenfunctions,
almost surely.

In the late 70s, mathematicians thought that ”AL = absence of transport”,
until the 90s, with the work of del Río-Jitomirskaya-Last-Simon, where they
showed that there might be AL with some transport.
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Introduction

Dynamical localization I

• We say that Hω exhibits dynamical localization (DL) in I if there exist
constants C < ∞ and c > 0 such that for all x ,y ∈ Zd ,

(DL) E
(

sup
t∈R
|〈δy ,e

−itHω χI(Hω)δx〉|
)
≤ Ce−c|x−y |

Theorem (DL implies absence of transport)
If (DL) holds in J ⊂ R, then for ϕ ∈ `2(Zd ) with compact support we have

sup
t
‖〈X〉p/2e−itHωχJ(Hω)ϕ‖2 <∞,

localization in energy

weighted space
time evolution

for every p ≥ 0, with probability one.
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Introduction

Proof of theorem (DL implies absence of transport)

Recall that |X |ϕ(n) = |n|ϕ(n) for ϕ ∈ `2(Zd ). Take ϕ ∈ `2
c(Zd ), that is, for

some R > 0, ϕ(n) = 0 for |n|> R. Then, using the expression

‖x‖= ∑
n
|〈x ,δn〉|2

∥∥|X |p e−itHω χI(Hω)ϕ
∥∥2

= ∑
j∈Zd

∣∣〈δj , |X |p e−itHω χI(Hω)ϕ〉
∣∣2

≤∑
j
|j|2p ∣∣〈δj ,e

−itHω χI(Hω)ϕ〉
∣∣2

≤∑
j
|j|2p ∣∣〈δj ,e

−itHω χI(Hω)ϕ〉
∣∣‖ϕ‖

≤∑
j
|j|2p ‖ϕ‖

∣∣∣∣∣〈δj ,e
−itHω χI(Hω)

(
∑
|k |≤R

〈ϕ,δk 〉δk

)
〉
∣∣∣∣∣

≤∑
j

∑
|k |≤R

|j|2p ‖ϕ‖2 ∣∣〈δj ,e
−itHωχI(Hω)δk 〉

∣∣
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Introduction

∥∥|X |p e−itHω χI(Hω)ϕ
∥∥2 ≤∑

j
∑
|k |≤R

|j|2p ‖ϕ‖2 ∣∣〈δj ,e
−itHωχI(Hω)δk 〉

∣∣
Taking the expectation E in both sides, we get

E
(

sup
t

∥∥|X |p e−itHω χI(Hω)ϕ
∥∥2
)

≤∑
j

∑
|k |≤R

|j|2p ‖ϕ‖2E
(

sup
t

∣∣〈δj ,e
−itHω χI(Hω)δk 〉

∣∣)
≤∑

j
∑
|k |≤R

|j|2p ‖ϕ‖2 Ce−c|j−k | (DL)

< ∞

Finally, if E(f ) < ∞, then f < ∞ a.s. Therefore, for any p ≥ 0,

sup
t

∥∥|X |p e−itHωχI(Hω)ϕ
∥∥2

< ∞ a.s.
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Introduction

Dynamical localization II

Recall that

• We say that Hω exhibits dynamical localization (DL) in I if there exist
constants C < ∞ and c > 0 such that for all x ,y ∈ Zd ,

(DL) E
(

sup
t∈R
|〈δy ,e

−itHω χI(Hω)δx〉|
)
≤ Ce−c|x−y |

Theorem (DL implies pure point spectrum)
If (DL) holds in an interval I, then Hω has pure point spectrum in I with
probability one.

The proof relies on the RAGE Theorem.
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Introduction RAGE theorem

Theorem (Ruelle-Amrein-Georgescu-Enss)
Let H be a s.a. operator on `2(Zd ), let Pc and Ppp be the orthogonal
projections onto Hc and Hpp, resp. Let ΛL be a cube of side L around the
origin. Then, for any ϕ ∈ `2(Zd ),

‖Pcϕ‖2 = lim
L→∞

lim
T→∞

1
T

∫ T

0

(
∑

x /∈ΛL

|e−itH
ϕ(x)|2

)
dt

‖Pppϕ‖2 = lim
L→∞

lim
T→∞

1
T

∫ T

0

(
∑

x∈ΛL

|e−itH
ϕ(x)|2

)
dt
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Introduction

Take ϕ ∈ `c(Zd ), that is, for some R > 0, ϕ(n) = 0 for |n|> R. From RAGE
Theorem we have that

‖Pc(Hω)χI(Hω)ϕ‖2 = lim
L→∞

lim
T→∞

1
T

∫ T

0

(
∑

x /∈ΛL

|e−itH
χI(Hω)ϕ(x)|2

)
dt

Note that

∑
x /∈ΛL

|e−itH
χI(Hω)ϕ(x)|2 =

∥∥∥χΛc
L
e−itH

χI(Hω)ϕ

∥∥∥2
=
∥∥∥χΛc

L
e−itH

χI(Hω)χΛR ϕ

∥∥∥2

≤
∥∥∥χΛc

L
e−itH

χI(Hω)χΛR

∥∥∥‖ϕ‖2

≤ ∑
|x |≥L

∑
|k |≤R

∣∣〈δx ,e
−itH

χI(Hω)δk 〉
∣∣‖ϕ‖2

Taking the expectation E in both sides, and using Fatou’s lemma and Fubini,
yields

E(‖Pc(Hω)χI(Hω)ϕ‖2)

≤ lim
L→∞

lim
T→∞

1
T

∫ T

0
∑
|x |≥L

∑
|k |≤R

‖ϕ‖2E
(∣∣〈δx ,e

−itH
χI(Hω)δk 〉

∣∣)
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Introduction

E(‖Pc(Hω)χI(Hω)ϕ‖2)

≤ lim
L→∞

lim
T→∞

1
T

∫ T

0
∑
|x |≥L

∑
|k |≤R

‖ϕ‖2E
(∣∣〈δx ,e

−itH
χI(Hω)δk 〉

∣∣)
Note that by hypothesis (dynamical localization),

E
(∣∣〈δx ,e

−itH
χI(Hω)δk 〉

∣∣)≤ Ce−c|x−k |

uniformly in t , then

E(‖Pc(Hω)χI(Hω)ϕ‖2)≤ C ‖ϕ‖2 lim
L→∞

∑
|x |≥L

∑
|k |≤R

e−c|x−k |

Since the sum in the r.h.s is convergent, the limit when R→ ∞ is 0. Then

E(‖Pc(Hω)χI(Hω)ϕ‖2) = 0

implies Pc(Hω)χI(Hω)ϕ = 0 for almost every ω ∈ Ω and ϕ ∈ `c(Zd ). Since
`c(Zd ) is dense in `2(Zd ), the result follows.
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Introduction

Alternative proof (absence of transport implies pure point spectrum).

Take ϕ ∈ `c(Zd ), that is, for some R > 0, ϕ(n) = 0 for |n|> R. From RAGE
Theorem we have that

‖Pc(Hω)χI(Hω)ϕ‖2 = lim
L→∞

lim
T→∞

1
T

∫ T

0

(
∑

x /∈ΛL

|e−itH
χI(Hω)ϕ(x)|2

)
dt

Note that

∑
x /∈ΛL

|e−itH
χI(Hω)ϕ(x)|2 ≤ ∑

x /∈ΛL

1

|x |2p | |X |
p e−itH

χI(Hω)ϕ(x)|2

≤ ‖|X |p e−itH
χI(Hω)ϕ(x)‖2

∑
x /∈ΛL

1

|x |2p

Therefore,

lim
T→∞

1
T

∫ T

0
‖|X |p e−itH

χI(Hω)ϕ(x)‖2dt < C

Which leaves

‖Pc(Hω)χI(Hω)ϕ‖2 ≤ C lim
L→∞

∑
x /∈ΛL

1

|x |2p = 0
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Introduction

Summary

I Transport of electrons in materials is studied by looking at dynamical
properties of Schrödinger operators.

I There is a relation between spectral and dynamical properties, but they
are not equivalent !

I Disordered materials are represented by random Schrödinger operators
I Random Schrödinger operators exhibit localization in some regions of

the spectrum
I The right notion of localization is dynamical localization (physically

relevant)

What P.W. Anderson observed in ’58 is...
dynamical localization.
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Introduction RAGE Theorem

Proof of RAGE Theorem

Theorem (Ruelle-Amrein-Georgescu-Enss)
Let H be a s.a. operator on `2(Zd ), let Pc and Ppp be the orthogonal
projections onto Hc and Hpp, resp. Let ΛL be a cube of side L around the
origin. Then, for any ϕ ∈ `2(Zd ),

‖Pcϕ‖2 = lim
L→∞

lim
T→∞

1
T

∫ T

0

(
∑

x /∈ΛL

|e−itH
ϕ(x)|2

)
dt

‖Pppϕ‖2 = lim
L→∞

lim
T→∞

1
T

∫ T

0

(
∑

x∈ΛL

|e−itH
ϕ(x)|2

)
dt

Proof :
I Characterization of ψ ∈Hpp

I Characterization of ψ ∈Hac

I Characterization of ψ ∈Hc

I Proof of Theorem
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Introduction RAGE Theorem

Characterization of ψ ∈Hpp

Theorem
Let H be a self-adjoint operator in `2(Zd ). Take ϕ ∈Hpp and let
ΛL := [−L,L]d ∩Zd . Then

lim
L→∞

sup
t

(
∑

x∈ΛL

∣∣e−itH
ϕ(x)

∣∣2)= ‖ϕ‖2

and

(∗) lim
L→∞

sup
t

(
∑

x /∈ΛL

∣∣e−itH
ϕ(x)

∣∣2)= 0

Proof :

1) the case ϕ is an eigenfunction

2) ϕ is a finite linear combination of eigenfunctions

3) ϕ ∈Hpp
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Introduction RAGE Theorem

Since e−itH is unitary, for all t we have

‖ϕ‖2 =
∥∥e−itH

ϕ
∥∥2

= ∑
x∈Zd

∣∣〈δx ,e
−itH

ϕ〉
∣∣2

= ∑
x∈ΛL

∣∣(e−itH
ϕ)(x)

∣∣2 + ∑
x /∈ΛL

∣∣(e−itH
ϕ)(x)

∣∣2
1) Let ϕ be an eigenfunction with eigenvalue E , (e−itHϕ)(x) = e−itE ϕ(x), so∣∣(e−itHϕ)(x)

∣∣= |ϕ(x)| uniformly on t . Therefore, since ϕ ∈ `2(Zd ),

∑
x /∈ΛL

∣∣(e−itH
ϕ)(x)

∣∣2 = ∑
x /∈ΛL

|ϕ(x)|2→ 0, when L→ ∞

Next, note that (∗) can be written as∥∥∥χΛc
L
e−itH

ϕ

∥∥∥→L→∞ 0 uniformly in t
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Introduction RAGE Theorem

2) Let ϕ be the finite linear combination of eigenfunctions ϕk ϕ = ∑
N
k=1 ak ϕk .

Then ∥∥∥χΛc
L
e−itH

ϕ

∥∥∥=

∥∥∥∥∥ N

∑
k=1

ak χΛc
L
e−itH

ϕk

∥∥∥∥∥≤ N

∑
k=1
|ak |

∥∥∥χΛc
L
e−itH

ϕk

∥∥∥
=

N

∑
k=1
|ak |

∥∥∥χΛc
L
e−itE

ϕk

∥∥∥
=

N

∑
k=1
|ak |

∥∥∥χΛc
L
ϕk

∥∥∥

Since ϕk ∈ `2(Zd ),
∥∥∥χΛc

L
ϕk

∥∥∥→ 0. So we can take L large enough depending

on N in order to make the r.h.s. as small as we want, uniformly in t .
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Introduction RAGE Theorem

3) Let ϕ ∈Hpp. There exists a sequence of linear combinations of
eigenfunctions ϕN := ∑

N
k=1 ak ϕk such that, given ε > 0, ‖ϕ−ϕN‖< ε for N

large enough. Then∥∥∥χΛc
L
e−itH

ϕ

∥∥∥≤ ∥∥∥χΛc
L
e−itH (ϕ−ϕN)

∥∥∥+
∥∥∥χΛc

L
e−itH (ϕN)

∥∥∥
≤
∥∥e−itH (ϕ−ϕN)

∥∥+
∥∥∥χΛc

L
e−itH (ϕN)

∥∥∥
By taking N large enough, ‖ϕ−ϕN‖< ε/2, while by taking L large enough,

depending on N, we have
∥∥∥χΛc

L
e−itH (ϕN)

∥∥∥< ε/2, therefore∥∥∥χΛc
L
e−itH

ϕ

∥∥∥< ε uniformly in t

which yields ∥∥∥χΛc
L
e−itH

ϕ

∥∥∥→L→∞ 0
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Introduction RAGE Theorem

Characterization of ψ ∈Hac

Theorem
Let H be a self-adjoint operator in `2(Zd ). Take ϕ ∈Hac and let ΛL be a finite
set in Zd . Then

lim
t→∞

(
∑

x∈ΛL

∣∣e−itH
ϕ(x)

∣∣2)= 0

and

lim
t→∞

(
∑

x /∈ΛL

∣∣e−itH
ϕ(x)

∣∣2)= ‖ϕ‖2
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Introduction RAGE Theorem

Note that
〈ψ,e−itH

ϕ〉=
∫

e−itλdµψ,ϕ(λ),

where dµψ,ϕ(λ) is the spectral measure associated to ψ and ϕ in `2(Zd ). If
ϕ ∈Hac , then dµψ,ϕ is a.c. with respect to the Lebesgue measure, i.e., there
exists a function g ∈ L1(R,dλ) such that

dµψ,ϕ(λ) = g(λ)dλ.

Then,

〈ψ,e−itH
ϕ〉=

∫
e−itλg(λ)dλ

which is the Fourier transform of g. By the Riemann-Lebesgue Lemma, the
r.h.s. tends to 0 in absolute value, as t → ∞.
Taking ψ = δx , we get∣∣(e−itH

ϕ)(x)
∣∣=
∣∣〈δx ,e

−itH
ϕ〉
∣∣→t→∞ 0

Taking now the vector χΛL = ∑
x∈ΛL

δx ∈ `2(Zd ) we get the desired result.
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Introduction RAGE Theorem

Characterization of ϕ ∈Hc

Now, we want an expression for ϕ ∈Hc , not just Hac . The following will be
useful,

Theorem (Wiener)
Let µ be a bounded Borel measure on R. Then

lim
T→∞

1
T

∫ T

0
|µ̂(t)|2 dt = ∑

x atom of µ
|µ({x})|2 ,

where µ̂(t) =
∫

e−itλdµ(λ) is the Fourier transform of the measure µ. If µ is
continuous, the r.h.s. is 0.
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Introduction RAGE Theorem

Theorem
Let H be a self-adjoint operator in `2(Zd ). Take ϕ ∈Hc and let ΛL be a finite
set in Zd . Then

lim
T→∞

1
T

∫ T

0

(
∑

x∈ΛL

∣∣e−itH
ϕ(x)

∣∣2)= 0

and

lim
T→∞

1
T

∫ T

0

(
∑

x /∈ΛL

∣∣e−itH
ϕ(x)

∣∣2)= ‖ϕ‖2

Proof : for ϕ ∈Hc , for any x ∈ Zd , the measure µδx ,ϕ is continuous. Using
Wiener, we have

lim
T→∞

1
T

∫ T

0

∣∣∣∣∫ e−itλdµδx ,ϕ(λ)

∣∣∣∣2 dt = 0

Note that
∣∣∫ e−itλdµδx ,ϕ(λ)

∣∣2 =
∣∣〈δx ,e−itHϕ〉

∣∣2 =
∣∣e−itHϕ(x)

∣∣2. Taking the
vector χΛL = ∑x∈ΛL

δx gives the claim.
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Introduction RAGE Theorem

Proof of RAGE Theorem

Theorem (Ruelle-Amrein-Georgescu-Enss)
Let H be a s.a. operator on `2(Zd ), let Pc and Ppp be the orthogonal
projections onto Hc and Hpp, resp. Let ΛL be a cube of side L around the
origin. Then, for any ϕ ∈ `2(Zd ),

‖Pcϕ‖2 = lim
L→∞

lim
T→∞

1
T

∫ T

0

(
∑

x /∈ΛL

|e−itH
ϕ(x)|2

)
dt

‖Pppϕ‖2 = lim
L→∞

lim
T→∞

1
T

∫ T

0

(
∑

x∈ΛL

|e−itH
ϕ(x)|2

)
dt
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Introduction RAGE Theorem

Proof :

‖Pcϕ‖2 =
∥∥e−itHPcϕ

∥∥2
= ∑

x∈ΛL

∣∣e−itHPcϕ(x)
∣∣2 + ∑

x /∈ΛL

∣∣e−itH(ϕ−Pppϕ)(x)
∣∣2

∑
x /∈ΛL

∣∣e−itH(ϕ−Pppϕ)(x)
∣∣2 = ∑

x /∈ΛL

∣∣e−itH
ϕ
∣∣2 + ∑

x /∈ΛL

∣∣e−itHPppϕ
∣∣2

+ ∑
x /∈ΛL

2Re(e−itH
ϕ(x))(e−itHPppϕ(x))

Using Cauchy-Schwarz, one can show that

|E | :=
∣∣∣∣∣ ∑
x /∈ΛL

2Re(e−itH
ϕ(x))(e−itHPppϕ(x))

∣∣∣∣∣≤‖ϕ‖2

(
sup

t
∑

x /∈ΛL

∣∣(e−itHPppϕ(x))
∣∣2)1/2

Recalling the characterization for Pppϕ , taking limL→∞, the r.h.s. tends to
0.
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Introduction RAGE Theorem

We get

‖Pcϕ‖2 = ∑
x∈ΛL

∣∣e−itHPcϕ(x)
∣∣2 + ∑

x /∈ΛL

∣∣e−itH
ϕ
∣∣2 + ∑

x /∈ΛL

∣∣e−itHPppϕ
∣∣2 + E

We take 1
T

∫ T
0 in both sides and note that 1

T

∫ T
0 ‖Pcϕ‖2 = ‖Pcϕ‖2,

‖Pcϕ‖2 =
1
T

∫ T

0
∑

x∈ΛL

∣∣e−itHPcϕ(x)
∣∣2 +

1
T

∫ T

0
∑

x /∈ΛL

∣∣e−itH
ϕ
∣∣2

+
1
T

∫ T

0
∑

x /∈ΛL

∣∣e−itHPppϕ
∣∣2 + E

Taking limL→∞ limT→∞, we can use the characterizations obtained for Hc ac

and Hpp pp and the fact that the error goes to 0, to finally obtain

‖Pcϕ‖2 = lim
L→∞

lim
T→∞

1
T

∫ T

0
∑

x /∈ΛL

∣∣e−itH
ϕ
∣∣2
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Introduction RAGE Theorem
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Introduction Wiener’s Theorem

Recall that in RAGE Theorem, given a self-adjoint operator H, we have the
following expression for any ϕ ∈ `2(Zd ),

‖Pcϕ‖2 = lim
L→∞

lim
T→∞

1
T

∫ T

0

(
∑

x /∈ΛL

|e−itH
ϕ(x)|2

)
dt.

To prove this we used :

Theorem (Wiener)
Let µ be a bounded Borel measure on R. Then

lim
T→∞

1
T

∫ T

0
|µ̂(t)|2 dt = ∑

x atom of µ
|µ({x})|2 ,

where µ̂(t) :=
∫

e−itλdµ(λ) is the Fourier transform of the measure µ. In
particular, if µ is continuous, the r.h.s. is 0.
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Introduction Wiener’s Theorem

Note that if dµ = µδx ,ϕ is the spectral measure of H associated to the vectors
δx and ϕ, we have that

µ̂(t) =
∫

e−itλdµδx ,ϕ(λ) = 〈δx ,e
−itH

ϕ〉= e−itH
ϕ(x),

so Wiener’s theorem gives that

lim
T→∞

1
T

∫ T

0

∣∣e−itH
ϕ(x)

∣∣2 dt = ∑
λatom of µ

∣∣µδx ,ϕ({λ})
∣∣2 .

Moreover, if ϕ ∈Hc for H, then µδx ,ϕ is also continuous measure (it has no
atoms). Indeed, for any u ∈ R :

µδx ,ϕ({u}) = 〈δx ,χ{u}ϕ〉 ≤ ‖δx‖
∥∥χ{u}ϕ

∥∥= µϕ({u}) = 0.

Therefore,

lim
T→∞

1
T

∫ T

0

∣∣e−itH
ϕ(x)

∣∣2 dt = 0.
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Proof of Wiener’s Theorem

Theorem (Wiener)
Let µ be a bounded Borel measure on R. Then

lim
T→∞

1
T

∫ T

0
|µ̂(t)|2 dt = ∑

x atom of µ
|µ({x})|2 ,

where µ̂(t) :=
∫

e−itλdµ(λ) is the Fourier transform of the measure µ.

Proof :

1
T

∫ T

0

∣∣∣∣∫ e−itλdµ(λ)

∣∣∣∣2 dt =
1
T

∫ T

0

(∫
e−itλdµ(λ)

)(∫
e−itv dµ(v)

)
dt

=
1
T

∫ T

0

(∫
e−itλdµ(λ)

)(∫
e−itv dµ(v)

)
dt

=
1
T

∫ T

0

(∫
e−itλdµ(λ)

)(∫
eitv dµ(v)

)
dt
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1
T

∫ T

0

∣∣∣∣∫ e−itλdµ(λ)

∣∣∣∣2 dt =
1
T

∫ T

0

(∫
e−itλdµ(λ)

)(∫
eitv dµ(v)

)
dt

=
1
T

∫ T

0

∫ ∫
e−it(λ−v)dµ(λ)dµ(v)dt

=
∫ ∫

1
T

∫ T

0
e−it(λ−v)dt dµ(λ)dµ(v)

• Note that ∣∣∣∣ 1
T

∫ T

0
e−it(λ−v)dt

∣∣∣∣≤ 1,
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• If λ 6= v ,

1
T

∫ T

0
e−it(λ−v)dt =− 1

T
e−it(λ−v)

i(λ− v)

∣∣∣∣∣
T

0

=
1

iT (λ− v)
(1−e−iT (λ−v)).

Then

lim
T→∞

1
T

∫ T

0
e−it(λ−v)dt = 0.

• If λ = v ,

1
T

∫ T

0
e−it(λ−v)dt = 1.
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Therefore, we have that the function

f (T ,λ,v) :=
1
T

∫ T

0
e−it(λ−v)dt

is such that |f | ≤ 1, f (T ,λ,v)→ 0 for λ 6= v and f = 1 for λ = v . Therefore,
pointwise, when T → ∞

f (T ,λ,v)→ χ{(x ,y);x=y}(λ,v).

Next we use Lebesgue’s dominated convergence theorem to show

lim
T→∞

∫ ∫
f (T ,λ,u)dµ(λ)dµ(v) =

∫ ∫
χ{(x ,y);x=y}(λ,v)dµ(λ)dµ(v)

=
∫

µ({v})dµ(v)

= ∑
v atom of µ

|µ({v})|2 .
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Previously on...

Last time we saw that electronic transport in disordered materials is studied
using a random Schrödinger operator of the form

Hω =−∆ + Vω, ω ∈ Ω

where (Ω,B,P) is a certain probability space.

At very strong disorder, there is no propagation of waves. The material is
therefore an insulator. Mathematically, this is described by the notion of
dynamical localization.
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Absence of transport in the material represented by Hω is described as : for
any ϕ ∈ `c(Zd ),

sup
t

∥∥|X |p e−itHω χI(Hω)ϕ
∥∥< ∞

for all p ≥ 0 and for P-a.e. ω ∈ Ω.

Types of localization

• We say that the operator Hω exhibits spectral localization in an interval I
if σ(H)∩ I = σpp(H)∩ I , a.s.

• We say that H exhibits Anderson localization (AL) in I if
σ(H)∩ I = σpp(H)∩ I with exponentially decaying eigenfunctions, a.s.

• We say that Hω exhibits dynamical localization (DL) in I if there exist
constants C < ∞ and c > 0 such that for all x ,y ∈ Zd ,

(DL) E
(

sup
t∈R
|〈δy ,e

−itHω χI(Hω)δx〉|
)
≤ Ce−c|x−y |

DL⇒ absence of transport

DL⇒ AL⇒ pp spectrum
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The Anderson model

Ergodic properties and spectrum
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Some definitions from probability

I We consider a probability space (Ω,B,P), where B is a σ-algebra and
P is a probability measure on (Ω,B).

I Given a probability space (Ω,B,P), a random variable is a measurable
function X : Ω→ R.

I The probability distribution of X is the measure µ defined by

µ(A) = P({ω ∈ Ω; X(ω) ∈ A}).

I The support of the measure µ is given by

suppµ := {x ∈ R; µ([x− ε,x + ε]) > 0, ∀ε > 0}.

I If for any A ∈ B , P(Y (ω) ∈ A) = P(X(ω) ∈ A) = µ(A), we say X and Y
are identically distributed.

I A collection of random variables {Xi}i∈Zd is called a stochastic process.
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I A collection of random variables {Xn} is called independent if, for any
finite subset {n1, ...nk} ⊂ Zd and abritrary Borel sets A1, ...,Ak ⊂ R,

P(Xn1 (ω) ∈ A1, ...,Xnk (ω) ∈ Ak ) =
k

∏
j=1

P(Xnj (ω) ∈ Aj ).

I If the collection of random variables {Xn} is independent and identically
distributed (i.i.d.), we have

P(X1(ω) ∈ A, ...,Xk (ω) ∈ A) =
k

∏
j=1

µ(A).

I We will often consider (Ω,B,P) =

(
RZd

,BR, ⊗
n∈Zd

µ
)

, where

RZd
:= ⊗

j∈Zd
R and write ω := (ωn)n∈Zd instead of {Xn(ω)}n∈Zd .
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The Anderson model

Hω =−∆ + ∑
j∈Zd

ωjPδj on `2(Zd ),

where Pδj = 〈δj , ·〉δj .

• −∆ is the discrete Laplacian

−∆ϕ(n) = ∑
m∼n

ϕ(m)−ϕ(n),

• ωj are i.i.d. random variables, with probability distribution µ with compact
support A.

• Ω := AZd 3 ω := (ωj ). The probability space is the product space
(Ω,B,P) with the product σ-algebra of Borel sets B and the product
probability measure

P =
⊗
j∈Zd

µ.

Analogously, we can define the Anderson model on `2(Γ), for Γ a countable
set. For ex., on a tree with branching number K , called the Bethe lattice B.
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The Anderson model

Hω =−∆ + ∑
j∈Zd

ωjPδj︸ ︷︷ ︸
Vω

on `2(Zd ),

where Pδj = 〈δj , ·〉δj . This operator acts in the following way

(Hωϕ)(n) =−∆ϕ + Vω(n)ϕ(n)

=−∆ϕ + ωnϕ(n).

Since suppµ is compact, the potential Vω is bounded. Moreover, Vω is
self-adjoint on `2(Zd ).

Since −∆ and Vω are self-adjoint, the operator Hω =−∆ + Vω is self-adjoint
in `2(Zd ).
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Definition
The map Ω 3 ω 7→ Hω ∈ L(H ) is measurable if for any ϕ,ψ ∈H , the map
Ω 3 ω 7→ 〈ϕ,Hωψ〉 ∈ C is measurable.

• The Anderson model ω 7→ Hω on `2(Zd ) is measurable.

Note that Hω represents the family of operators (Hω)ω∈Ω.
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Definition
Hω is called ergodic if there exists an ergodic group of transformations (τγ)γ∈Γ

acting on Ω associated to a family of unitary operators (Uγ)γ∈Γ on H s.t.

Hτγ(ω) = UγHωU∗γ for allγ ∈ Γ.

• The Anderson model Hω on `2(Zd ) is ergodic with respect to Zd .
That is, with respect to the translations τγ(ω) = (ωn+γ)n∈Zd and
Uγϕ(n) = ϕ(n− γ) with γ ∈ Zd .

The Anderson model Hω on `2(B) is ergodic w.r.t. a certain family of
transformations in B (see Acosta-Klein’92).
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• The Anderson model Hω on `2(Zd ) is ergodic with respect to Zd .

Indeed, recall the family {τγ}γ∈Zd of translations on Ω given by

τγ(ω) = (ωn−γ)n∈Zd ,

and the family of unitary operators Uγ acting on `2(Zd ) defined by

Uγϕ(n) = ϕ(n− γ), γ ∈ Zd .

Note that U∗γ is given by U∗γ ϕ(n) = ϕ(n + γ) = U−γ. Then

UγHωU−γϕ(n) = Uγ (−∆)U−γ ϕ(n) + Uγ

(
Vω U−γ

)
ϕ(n)

=−∆ϕ(n) +
(
Vω U−γ ϕ

)
(n− γ)

=−∆ϕ(n) + Vω(n− γ)
(
U−γϕ

)
(n− γ)

=−∆ϕ(n) + Vω(n− γ)ϕ(n).

Recall that Vω acts in the following way : Vωϕ(n) = ωnϕ(n), for all n ∈ Zd .
Therefore Vω(n− γ)ϕ(n) = ωn−γϕ(n) = Vτγ(ω)ϕ(n), and so

UγHωU−γϕ = Hτγ(ω).
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Spectrum

Theorem (Kunz-Souillard’80)
Let Hω =−∆ + Vω be the Anderson model on `2(Zd ). Then

(∗) σ(Hω) = σ(−∆) + suppµ a.s.

Remarks :

a) For the Anderson model Hω on `2(Zd ), σ(−∆) = [−2d ,2d ].

b) For the Anderson model Hω on `2(B), (∗) remains valid. In that case,
σ(−∆B) = [−2

√
K ,2
√

K ], where K is the branching number of B.

See S. Golénia’s course
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The following will be crucial in our proof.

W. Kirsch describes this result as "Whatever can happen, will happen, in fact,
infinitely often".

Proposition
There exists Ω0 such that :
for any ω ∈ Ω0, any compact set Λ⊂ Zd , any sequence {qi}i∈Λ with
qi ∈ suppµ and any ε > 0,
there exists a sequence {γj}j∈Zd ⊂ Zd with ‖γj‖→ ∞ such that

sup
n∈Λ
|Vω(n + γj )−qn|< ε.
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Now we can prove the theorem

Theorem (Kunz-Souillard’80)
Let Hω =−∆ + Vω be the Anderson model on `2(Zd ). Then

σ(Hω) = σ(−∆) + suppµ a.s.

Proof :
• σ(Hω)⊂ σ(−∆) + suppµ
One can show that σ(Vω) = suppµ almost surely. One can also show that for
a bounded operator B, and self-adjoint operator A,

σ(A + B)⊂ σ(A) + [−‖B‖ ,‖B‖].

This, applied to Vω and −∆ gives

σ(Hω)⊂ suppµ + [−2d,2d].
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• σ(−∆) + suppµ⊂ σ(Hω)
We will use Weyl’s criterion for the spectrum of the operator :

E ∈ σ(H) ⇐⇒ ∃(ϕn)⊂ `2
c(Zd ), ‖ϕn‖= 1s.t.‖(H−E)ϕn‖ → 0

n→∞

Let E ∈ σ(−∆) + suppµ, that is,

E = E0 + E1 with E0 ∈ σ(−∆) and E1 ∈ suppµ

There exists a Weyl sequence (ϕj ) for −∆ and E0 s.t. ϕj ∈ `c(Zd ), ‖ϕj‖= 1
and

‖(−∆−E0)ϕj‖ → 0
j→∞

Then

‖(Hω−E)ϕj‖= ‖(−∆ + Vω− (E0 + E1))ϕj‖
≤ ‖(−∆−E0)ϕj‖︸ ︷︷ ︸

→0

+‖(Vω−E1)ϕj‖
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Note that for a fixed ω, ‖(Vω−E1)ϕj‖ is not necessarily small.

Fix j , ϕj and ε := 1/j . Note that E1 ∈ suppµ, so we can apply the "whatever
can happen will happen"-Proposition to

Λ = suppϕj , and {qi}i∈Λ, qi = E1, ∀i ∈ Λ

This says that for almost every ω ∈ Ω, there exists a sequence {γ(j)
k }k ⊂ Zd

with
∥∥∥γ

(j)
k

∥∥∥→ ∞ with k , such that

sup
n∈supp ϕj

∣∣∣Vω(n + γ
(j)
k )−E1

∣∣∣< 1
j

Since
∥∥∥γ

(j)
k

∥∥∥→ ∞ with k , for every ϕj we can pick a kj , γ
(j)
kj

such that the

sequence {ϕj (·− γ
(j)
kj

)}j∈Zd is orthogonal.

We define a new sequence ϕ̃j := ϕj (·− γ
(j)
kj

).
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Note that for ϕ̃j := ϕj (·− γ
(j)
kj

) we have

‖(Vω−E1)ϕ̃j‖2 = ∑
n∈supp ϕ̃j

|(Vω(n)−E1)ϕ̃j (n)|2

= ∑
n∈supp ϕ̃j

∣∣∣(Vω(n)−E1)ϕj (n− γ
(j)
kj

)
∣∣∣2 , m = n− γ

(j)
kj

= ∑
m∈suppϕj

∣∣∣(Vω(m + γ
(j)
kj

)−E1)ϕj (m)
∣∣∣2

≤ sup
m∈suppϕj

∣∣∣(Vω(m + γ
(j)
kj

)−E1)
∣∣∣2 ∑

m∈suppϕj

|ϕj (m)|2

≤ 1/j2

Therefore,

‖(Hω−E)ϕ̃j‖ ≤ ‖(−∆−E0)ϕ̃j‖+‖(Vω−E1)ϕ̃j‖ →
j→∞

0.

That is, ϕ̃j is a Weyl sequence for Hω and E , therefore E ∈ σ(Hω).
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Proof of Proposition "Whatever can happen will happen"

We will need the following fundamental tool :

Lemma (Borel-Cantelli)
Let (Ω,B,P) be a probability space and {An}n∈N be a sequence of
measurable sets. Define

A∞ : = {ω ∈ Ω : ω ∈ An for infinitely many n}
= ∩

N∈N
∪

n≥N
An.

1) If ∑
n
P(An) < ∞, then P(A∞) = 0.

2) If A1,A2, ...An.. are independent and ∑
n
P(An) = ∞, then P(A∞) = 1.

48 / 94



The Anderson model

Proposition (Whatever can happen, will happen)
There exists Ω0 such that :
for any ω ∈ Ω0, any compact set Λ⊂ Zd , any sequence {qi}i∈Λ with
qi ∈ suppµ and any ε > 0,
there exists a sequence {γj}j∈Zd ⊂ Zd with ‖γj‖→ ∞ such that

sup
n∈Λ
|Vω(n + γj )−qn|< ε.
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Proof : Fix a compact set Λ⊂ Zd , a sequence {qi}i∈Λ with qi ∈ suppµ and
ε > 0. Define

A := {ω ∈ Ω : sup
n∈Λ
|Vω(n)−qn|< ε}.

Since qn ∈ suppµ,
P(A) > 0.

Now take a sequence γj ∈ Zd such that ‖γm− γk‖> diam(Λ) for m 6= k and
define

Aj := {ω ∈ Ω : sup
n∈Λ
|Vω(n + γj )−qn|< ε}.

Since the Vω(n) are i.i.d., Aj are independent and

P(Aj ) = P(A) > 0 ∀j,

therefore

∑
j
P(Aj ) = ∞.
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Aj := {ω ∈ Ω : sup
n∈Λ
|Vω(n + γj )−qn|< ε}, ∑

j
P(Aj ) = ∞.

Then, we can use the Borel-Cantelli lemma, and deduce that for

A∞ (Λ,{qi},ε) := {ω ∈ Ω : ω ∈ Aj for infinitely many j},

we have
P(A∞ (Λ,{qi},ε)) = 1.

Now, we want to take all possible sets Λ. The space F of all finite subsets of
Zd is countable, then

P
(
∩

Λ∈F
A∞(Λ,{qi},ε)

)
= 1.
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We also want to consider all possible sequences {qi} with qi ∈ suppµ. We
can extract a countable dense subset Q of suppµ and get

P
(
∩

qi∈Q
∩

Λ∈F
A∞(Λ,{qi},ε)

)
= 1.

We also want to have the estimate to hold for ε > 0 as small as we want. We
can take ε = 1/k with k ∈ N, and define

Ω0 := ∩
k∈N

∩
qi∈Q

∩
Λ∈F

A∞(Λ,{qi},
1
k

)

and get P(Ω0) = 1. This is the set Ω0 we were looking for.
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Ergodic properties I

Recall that Hω is ergodic if there exists an ergodic group of transformations
(τγ)γ∈Γ acting on Ω associated to a family of unitary operators (Uγ)γ∈Γ on H
s.t.

Hτγ(ω) = UγHωU∗γ for allγ ∈ Γ.

As a consequence of egodicity, we have

Theorem (Pastur’80, Kunz-Souillard’80, Kirsch-Martinelli ’82)
If Hω is an ergodic operator, there exist closed sets Σ, Σpp,Σac ,Σsc ⊂ R
such that for P-a.e. ω ∈ Ω

Σ = σ(Hω)

Σpp = σpp(Hω), Σac = σac(Hω), Σsc = σsc(Hω).
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Ergodic properties II

Eigenvalue counting function : Let {ΛL}L∈N be a sequence of concentric
cubes in Zd . Consider the restriction Hω �ΛL := χΛLHωχΛL . We define, for
E ∈ R,

Nω
L (E) :=

1
vol(ΛL)

]{e.v. of Hω �ΛL≤ E}.

The Integrated Density of States (IDS) is defined as

N(E) := lim
L→∞

Nω
L (E).

• For the Anderson model Hω on `2(Zd ),

∗ Existence : the limit exists for P-a.e. ω ∈ Ω, and is deterministic.

∗ Almost-sure spectrum : for P-a.e. ω ∈ Ω,

{E : E is a growth point of N}= σ(Hω)
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Ergodic properties II

Eigenvalue counting function : Let {ΛL}L∈N be a sequence of concentric
cubes in Zd . Consider the restriction Hω �ΛL = χΛLHωχΛL . We define, for
E ∈ R,

Nω
L (E) :=

1
vol(Λ)

]{e.v. of Hω �ΛL≤ E}.

The Integrated Density of States (IDS) is defined as

N(E) := lim
L→∞

Nω
L (E).

• For the Anderson model Hω on `2(B),

∗ Existence : the limit exists for P-a.e. ω ∈ Ω, and is deterministic (for a
particular µ, see Acosta-Klein’92).

∗ Almost-sure spectrum : for P-a.e. ω ∈ Ω,

{E : E is a growth point of N}= σ(Hω)
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Lifshitz tails

Let E0 = infσ(−∆ + V0), with V0 periodic. The Integrated Density of States
(IDS) for H =−∆ + V0 behaves as

N(E)∼ (E−E0)d/2, E ↘ E0.

On the other hand, the IDS for the Anderson model Hω =−∆ + Vω, behaves
near E0 = infΣ as

N(E)∼ e−(E−E0)−d/2
E ↘ E0 Lifshitz tails

(see H. Najar’s talk last Friday)

• For the Anderson model Hω on `2(Zd ),

∗ The IDS decays exponentially near the bottom of the spectrum
⇒ localization.

• For the Anderson model Hω on `2(B),

∗ The IDS decays exponentially near the bottom of the spectrum
; localization (see Hocker–Escuti - Schumacher’14).
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Summary

We saw that the Anderson model Hω in `2(Zd ) is ergodic. That is, there
exists an ergodic group of transformations (τγ)γ∈Γ acting on Ω associated to
a family of unitary operators (Uγ)γ∈Γ on H s.t.

Hτγ(ω) = UγHωU∗γ for allγ ∈ Γ.

• ergodicity⇒ the spectrum of Hω is deterministic.
That is, there exists Σ⊂ R, such that

σ(Hω) = Σ for P-a.e.ω ∈ Ω.

• ergodicity⇒ the pp/sc/ac spectrum of Hω is deterministic.

• For Hω in `2(Zd ), we can compute the exact set in R which corresponds
to the deterministic spectrum.
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• ergodicity⇒ existence of Integrated Density of States.
Moreover, this function does not depend on ω ∈ Ω.

• The IDS gives another way to prove that the spectrum is deterministic.

• In some cases, the IDS gives also information on the localization region !

Reference

• W. Kirsch, An invitation to Random Schrödinger Operators, in Random
Schrödinger Operators, Panoramas et Syntheses Vol. 25, 2008 (SMF).
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The Anderson model

Results on localization and spectral type
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Let Hω,λ =−∆ + λVω, λ ∈ (0,∞).

Now that we know that Hω,λ has a deterministic spectrum, and the spectral
types pp, sc, ac are also deterministic, we can ask :

For which energies in σ(Hω,λ) and strength of the disorder λ do we have
localization, and for which energies and values of λ do we have
delocalization ?

For the Anderson model on `2(Zd ) there is a very good understanding of the
region of localization (and in particular, the pure point part) in spectral band
edges or at high disorder :

σ(Hω,λ) = σpp(Hω,λ)∪σc(Hω,λ).

Unfortunately, the delocalization problem is still open.
However, for the Anderson model on `2(B) there is more information on
delocalization.
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Between the regions of localization and delocalization, there is a transition :
I spectral : transition between pp spectrum and ac spectrum.
I dynamical : transition between localization (absence of quantum

transport) and delocalization (non-null quantum transport). Also called
metal-insulator transport transition or Anderson transition.

Absence of quantum transport in the material represented by Hω,λ is
described as : for any ϕ ∈ `c(Zd ),

sup
t

∥∥|X |p e−itHω,λ χI(Hω,λ)ϕ
∥∥< ∞

for all p ≥ 0 and for P-a.e. ω ∈ Ω.
Recall that

(DL)⇒ absence of transport⇒ pp spectrum.

Presence of quantum transport∥∥|X |p e−itHω,λ χI(Hω,λ)ϕ
∥∥→ ∞ as t → ∞
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Phase diagram for Hω,λ on `2(Zd), with d ≥ 2

Transport (Anderson) transition : passage from localized to extended states.

−2d 2d

σ(Hω,λ)

LocalisationX

ext. states ?

λ
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Phase diagram for Hω,λ on `2(B)
B : Bethe lattice with branching number K + 1.

Transport (Anderson) transition : passage from localized to extended states.

LocalisationX

Localisation ?

−2
√

K 2
√

K

σ(Hω,λ)
ext. states X

ext. states ?

λ
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How to prove localization ?

• Show the decay of the resolvent

Gω,λ(x ,y ;E + iε) := 〈δx ,(Hω,λ− (E + iε))−1
δy 〉,

when ε→ 0, for E ∈ I, for some open subset I ⊂ σ(Hω), and x ,y ∈ Zd .
This usually holds for I contained in the spectral edges.

• Use this decay to obtain

(DL) E
(

sup
t∈R
|〈δx ,e

−itHω,λ χI(Hω,λ)δy 〉|
)
≤ Ce−c|x−y |.

For example, one can use that, for s ∈ (0,1) there exists Cs such that

E

(
sup

f ∈C (R),|f |≤1
|〈δx , f (H)χI(H)δy 〉|

)
≤Cs lim inf

|ε|→0

∫
I
E
(∣∣Gω,λ(x ,y ;E + iε)

∣∣s)dE .
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There are other ways to link the resolvent to the spectrum.

For example, the Simon-Wolff Criterion : Let Hω =−∆ + Vω on `2(Zd ), such
that the probability distribution of the random variables, µ, is absolutely
continuous. Then, if for Lebesgue-a.e. E ∈ I and P-a.e. ω

lim
ε→0

∑
y∈Zd

∣∣〈δy ,(Hω− (E + iε))−1
δx〉
∣∣2 < ∞,

then the spectral measure associated with δx is pure point in I for P-a.e. ω.

For more examples, see S. Golénia’s course.

Note that the resolvent (Hω,λ−E)−1 is not defined for E ∈ σ(Hω,λ) ! The
methods to prove localization need to deal with this problem.
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Non-exhaustive list of results

Results on localization for the Anderson model on `2(Zd ) or L2(Rd )

• d = 1 : localization in the whole spectrum.
Golsheid-Molchanov-Pastur ’77, Kotani ’82, Carmona ’82, Simon ’84,
Damanik-Sims-Stolz ’01 (Bernoulli).

It is conjectured that in d = 2 there is localization in the whole spectrum.
So far, the methods only give localization at the edges of the spectrum. This
is an open problem !
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Results on localization for the Anderson model on `2(Zd ) or L2(Rd )

• d ≥ 2 : localization at the edges of the spectrum.

• Multiscale Analysis (MSA)
(Weak version) Prove that for some interval I ⊂ R the following holds :
for some α > 1, p > 2d and γ > 0 and for all E ∈ I ⊂ R, there is a
sequence of cubes ΛLk , Lk+1 = Lα

k , Lk ↗ Zd ,

P
(∣∣∣〈δx ,(Hω,λ �ΛLk

−E)−1
δy 〉
∣∣∣≤ e−γLk

)
≥ 1− 1

Lp
k
.

Fröhlich-Spencer ’83, von Dreifus-Klein ’89, Combes-Hislop ’94,
Germinet-De Bièvre ’98, Damanik-Stollmann ’01, Germinet-Klein ’01-’11,
Bourgain-Kenig ’06 (Bernoulli).

It is conjectured that in d ≥ 3 there is a metal-insulator transition. This is
an open problem !
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Results on localization for the Anderson model on `2(Zd ) or L2(Rd )

• d ≥ 2 : localization at the edges of the spectrum.

• Fractional Moment Method (FMM)
Prove that for I ⊂ R, the following holds : there exists s ∈ (0,1) and
0 < c, C < ∞ such that

E
(∣∣〈δx ,(Hω,λ− (E + iε))−1

δy 〉
∣∣s)≤ Ce−c‖x−y‖

uniformly in E ∈ I, ε > 0 and x ,y ∈ Zd .

Aizenman-Molchanov ’93, Aizenman’96, Graf,
Aizenman-Elgart-Hundertmark-Schenker ’01,
Aizenman-Elgart-Naboko-Schenker-Stolz ’03.

It is conjectured that in d ≥ 3 there is a metal-insulator transition. This is
an open problem !
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Results for the Anderson model on graphs (ex. `2(B))

• Localization
Aizenman-Molchanov ’93, Aizenman’94, Tautenhahn’11.
Exner-Helm-Stollmann’08, Schubert’14, Hislop-Post’08

• Delocalization and ac spectrum, `2(B)
Klein ’96- ’98, Aizenman-Sims-Warzel’06, Froese-Hasler-Spitzer’06,’07,
Halasan’09, Aizenman-Warzel’06–’16.

• Integrated Density of States.
Acosta-Klein’92, Hoecker–Escuti-Schumacher’12 (B), Antunović-Veselić’08

Results for the Anderson model on quantum graphs :
Klopp-Pankrashkin’08,’09, Aizenman-Sims-Warzel’06, Sabri’12.
Percolation graphs : Kirsch-Müller’06, Müller-Stollmann’.

For more results, see works by the ”Chemnitz school” :
P. Stollmann, I. Veselić, D. Lenz,
and M. Keller, M. Tautenhahn, C. Schubert, C. Schumacher, etc.
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Fractional Moment Method

Proof of localization at high disorder

Reference :
We follow closely Section 4 in G. Stolz’s notes An introduction to the
mathematics of Anderson localization, Contemporary Mathematics 551,
2010.
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Proof of localization

Recall that

• Hω exhibits dynamical localization (DL) in I if there exist constants
C < ∞ and c > 0 such that for all x ,y ∈ Zd ,

(DL) E
(

sup
t∈R
|〈δy ,e

−itHω χI(Hω)δx〉|
)
≤ Ce−c|x−y |

Previously, we saw that DL⇒ AL⇒ pp spectrum, and
DL⇒ absence of transport.
Absence of transport : for any ϕ ∈ `c(Zd ),

sup
t

∥∥|X |p e−itHω χI(Hω)ϕ
∥∥< ∞

for all p ≥ 0 and for P-a.e. ω ∈ Ω.

Goal : to prove (DL) for Hω =−∆ + λVω, for large λ.
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Goal : to prove (DL) for Hω =−∆ + λVω, for large λ.

Theorem
Let I ⊂ R be a bounded open interval. If there exists s ∈ (0,1), 0 < c, C < ∞

such that

(∗) E
(∣∣〈δx ,(Hω,λ− (E + iε))−1

δy 〉
∣∣s)≤ Ce−c‖x−y‖

uniformly in E ∈ I, ε > 0 and x ,y ∈ Zd . Then Hω,λ exhibits dynamical
localization in I.

Therefore, our goal becomes

Goal : to prove (*) for Hω =−∆ + λVω, for large λ.
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In the rest of this lecture, we will focus in showing

Theorem
Let s ∈ (0,1). Then there exists λ0 > 0 such that for λ≥ λ0, there are
constants 0 < c, C < ∞ such that

(∗) E
(∣∣〈δx ,(Hω,λ− z)−1

δy 〉
∣∣s)≤ Ce−c‖x−y‖

uniformly in x ,y ∈ Zd and z ∈ C\R.
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We assume the random variables ωn have an absolutely continuous
probability distribution, with a continuous density, i.e., there exists ρ ∈ C (R)
s.t.

dµ(x) = ρ(x)dx

The proof relies on two results :

• An a priori bound on the fractional moment of the resolvent :

E
(∣∣〈δx ,(Hω,λ− z)−1

δy 〉
∣∣s)≤ C(s,λ,ρ).

• A decoupling lemma : for ρ there exists a constant C < ∞ s.t., uniformly
in α and β ∈ C,∫

1
|v−β|s ρ(v)dv ≤ C

∫ |v−α|s
|v−β|s ρ(v)dv
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The a priori bound

Since the random variables ωn have a probability density ρ, compactly
supported and bounded, we can write

E(·) :=
∫

Ω
(·)dP =

∫
A
...

∫
A

(·)...g(ωn)dωn...

Lemma (A priori bound)
There exists a constant C = (s,ρ) < ∞ such that

E
(∣∣〈δx ,(Hω,λ− z)−1

δy 〉
∣∣s)≤ C(s,ρ)

λs ,

for all x ,y ∈ Zd and λ > 0.

Proof : we will start by showing that

Ex ,y

(∣∣〈δx ,(Hω,λ− z)−1
δy 〉
∣∣s)≤ C(s,ρ)

λs .
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We will use the conditional expectation with (ωn)n 6=x ,y fixed.

Ex ,y (·) =
∫
A

∫
A

(·)ρ(ωx )ρ(ωy )dωx dωy .

Note that if we are able to show

Ex ,y

(∣∣〈δx ,(Hω,λ− z)−1
δy 〉
∣∣s)≤ C(s,ρ)

λs ,

the r.h.s does not depend on (ωn)n/∈{x ,y} anymore. We can then take the E
with respect to the rest of the r.v. and obtain

E
(∣∣〈δx ,(Hω,λ− z)−1

δy 〉
∣∣s)≤ C(s,ρ)

λs ,

which is the desired result.
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Proof of the a priori bound

Goal : to obtain an upper bound for

Ex ,y

(∣∣〈δx ,(Hω,λ− z)−1
δy 〉
∣∣s) , x ,y ∈ Zd .

We split the proof in two cases : i) when x = y and ii) when x 6= y .

i) Case x = y (rank-one perturbation)
Recall that

Hω,λ =−∆ + ∑
n∈Zd

ωnPn, Pn := 〈δn, ·〉δn.

Write ω = (ω̂,ωx ), where ω̂ = (ωn)n 6=x . Then

Hω,λ = Hω̂,λ + λωx Px

Using the resolvent identity, we get(
Hω,λ− z

)−1
=
(
Hω̂,λ− z

)−1−λωx
(
Hω̂,λ− z

)−1
Px
(
Hω,λ− z

)−1
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(
Hω,λ− z

)−1
=
(
Hω̂,λ− z

)−1−λωx
(
Hω̂,λ− z

)−1
Px
(
Hω,λ− z

)−1

Now we take matrix-elements i.e. compute 〈δx , ·〉 in both sides :

〈δx ,
(
Hω,λ− z

)−1
δx〉= 〈δx ,

(
Hω̂,λ− z

)−1
δx〉

−λωx〈δx ,
(
Hω̂,λ− z

)−1
δx〉〈δx ,

(
Hω,λ− z

)−1
δx〉

In abbreviated form :

Gω,λ(x ,x ;z) = Gω̂,λ(x ,x ;z)−λωx Gω̂,λ(x ,x ;z)Gω,λ(x ,x ;z).

If we write α = α(ω̂,x ,z) := (Gω̂,λ(x ,x ;z))−1, then

Gω,λ(x ,x ;z) =
1

α + λωx
.

Here, α is well-defined, because
ImGω̂,λ(x ,x ;z)

Imz > 0.
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Gω,λ(x ,x ;z) =
1

α + λωx
,

where α ∈ C and does not depend on ωx !
Suppose suppρ⊂ [−M,M]. Then

Ex

(∣∣Gω,λ(x ,x ;z)
∣∣s)=

∫ M

−M

1
|α + λωx |s

ρ(ωx )dωx

≤ ‖ρ‖∞

λs

∫ M

−M

1

|αλ−1 + ωx |s
dωx .

The r.h.s is integrable, independent of α and λ. Therefore,

Ex

(∣∣Gω,λ(x ,x ;z)
∣∣s)≤ C(ρ,s)

λs .

which is the desired bound for x = y .
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ii) Case x 6= y (rank-two perturbation)
Recall that

Hω,λ =−∆ + ∑
n∈Zd

ωnPn, Pn := 〈δn, ·〉δn.

Write ω = (ω̂,ωx ,ωy ), with ω̂ = (ωn)n/∈{x ,y}, then

Hω,λ = Hω̂,λ + λωx Px + λωy Py .

Writing P = Px + Py and using the resolvent identity, we get(
Hω,λ− z

)−1
=
(
Hω̂,λ− z

)−1−
(
Hω,λ− z

)−1
(λωx Px + λωy Py )

(
Hω̂,λ− z

)−1

Now, we want to determine the matrix-elements (omit z for convenience)(
Gω,λ(x ,x) Gω,λ(x ,y)
Gω,λ(y ,x) Gω,λ(y ,y)

)
in terms of (

Gω̂,λ(x ,x) Gω̂,λ(x ,y)
Gω̂,λ(y ,x) Gω̂,λ(y ,y)

)
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Using(
Hω,λ− z

)−1
=
(
Hω̂,λ− z

)−1−
(
Hω,λ− z

)−1
(λωx Px + λωy Py )

(
Hω̂,λ− z

)−1
.

we can compute each matrix element, for ex.

Gω,λ(x ,x) = Gω̂,λ(x ,x)−λωx Gω,λ(x ,x)Gω̂,λ(x ,x)−λωy Gω,λ(x ,y)Gω̂,λ(y ,x).

After some computations... we get(
Gω,λ(x ,x) Gω,λ(x ,y)
Gω,λ(y ,x) Gω,λ(y ,y)

)
=

[(
Gω̂,λ(x ,x) Gω̂,λ(x ,y)
Gω̂,λ(y ,x) Gω̂,λ(y ,y)

)
+λ

(
ωx 0
0 ωy

)]−1

=:

[
Gω̂ +λ

(
ωx 0
0 ωy

)]−1

Since Gω,λ(x ,y ;z) is one element of the matrix, we can bound it by the norm
of the matrix

E
(∣∣Gω,λ(x ,y ;z)

∣∣s)≤ Ex ,y

(∥∥∥∥∥
[

Gω̂ + λ

(
ωx 0
0 ωy

)]−1
∥∥∥∥∥

s)
.

79 / 94



Proof of localization

E
(∣∣Gω,λ(x ,y ;z)

∣∣s)≤ 1
λs Ex ,y

(∥∥∥∥∥
[

1
λ

Gω̂ +

(
ωx 0
0 ωy

)]−1
∥∥∥∥∥

s)

=
1
λs

∫ ∫ ∥∥∥∥∥
[

1
λ

Gω̂ +

(
ωx 0
0 ωy

)]−1
∥∥∥∥∥

s

ρ(ωx )ρ(ωy )dωx dωy

≤ ‖ρ‖
2
∞

λs

∫ M

−M

∫ M

−M

∥∥∥∥∥
[

1
λ

Gω̂ +

(
ωx 0
0 ωy

)]−1
∥∥∥∥∥

s

dωx dωy ,

Now, we would like to decouple the matrix with elements ωx ,ωy , and isolate
each term. For this, we do a change of variables

u =
ωx + ωy

2
, v =

ωx −ωy

2
,

and get

E
(∣∣Gω,λ(x ,y ;z)

∣∣s)≤ 2‖ρ‖2
∞

λs

∫ M

−M

∫ M

−M

∥∥∥∥∥
[

1
λ

Gω̂ +

(
−v 0
0 v

)
+uI2x2

]−1
∥∥∥∥∥

s

du dv
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E
(∣∣Gω,λ(x ,y ;z)

∣∣s)≤ 2‖ρ‖2
∞

λs

∫ M

−M

∫ M

−M

∥∥∥∥∥
[

1
λ

Gω̂ +

(
−v 0
0 v

)
+uI2x2

]−1
∥∥∥∥∥

s

du dv

Note that the matrix
1
λ

Gω̂ +

(
−v 0
0 v

)
has either positive or negative imaginary part.

Therefore we can use the following result :
Lemma : For all 2x2 matrices A such that either ImA≥ 0 or ImA≤ 0, one has∫ M

−M

∥∥∥(A + uI)−1
∥∥∥s

du ≤ C(M,s).

For a proof, see G. Stolz’s notes.
We obtain

E
(∣∣Gω,λ(x ,y ;z)

∣∣s)≤ 4M ‖ρ‖2
∞

C(M,s)
1
λs
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Remarks

In the last proof we obtained the following(
Gω,λ(x ,x) Gω,λ(x ,y)
Gω,λ(y ,x) Gω,λ(y ,y)

)
=

[(
Gω̂,λ(x ,x) Gω̂,λ(x ,y)
Gω̂,λ(y ,x) Gω̂,λ(y ,y)

)
+λ

(
ωx 0
0 ωy

)]−1

This is a special case of a more general result, called the Krein formula.
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Theorem (Krein formula)
Let H be a self-adjoint operator on some Hilbert space H . If

H = H0 + W ,

with W a finite rank operator satisfying

W = PWP

for some finite-dimensional orthogonal projection P, then, for z with Imz 6= 0,
we have [

P(H− z)−1P
]

=
[
W +

[
P(H0− z)−1P

]−1
]−1

where the inverse is taken on the restriction to the range of P.
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Let us recall that we want to prove the following

Theorem
Let s ∈ (0,1). Then there exists λ0 > 0 such that for λ≥ λ0, there are
constants 0 < c, C < ∞ such that

(∗) E
(∣∣〈δx ,(Hω,λ− z)−1

δy 〉
∣∣s)≤ Ce−c‖x−y‖

uniformly in x ,y ∈ Zd and z ∈ C\R.

Ingredients of the proof :

• The a priori bound on the fractional moment of the resolvent :

E
(∣∣〈δx ,(Hω,λ− z)−1

δy 〉
∣∣s)≤ C(s,λ,ρ).

• A decoupling lemma : for ρ there exists a constant C′ < ∞ s.t., uniformly in α

and β ∈ C, ∫
1

|v−β|s ρ(v)dv ≤ C
∫ |v−α|s
|v−β|s ρ(v)dv
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Proof of Theorem
Suppose x 6= y . Then 〈δx ,δy 〉= 0 and

〈δx ,δy 〉= 〈δx ,
(
Hω,λ− z

)−1 (
Hω,λ− z

)
δy 〉

=
〈

δx ,
(
Hω,λ− z

)−1
(−∆δy − (Vω− z)δy )

〉
=

〈
δx ,
(
Hω,λ− z

)−1

(
−∑

u∼y
δu− (λωy − z)δy

)〉

=

〈
δx ,
(
Hω,λ− z

)−1

(
−∑

u∼y
δu

)〉
+ (λωy − z)

〈
δx ,
(
Hω,λ− z

)−1
δy

〉
=−∑

u∼y
Gω,λ(x ,u;z) + (λωy − z)Gω,λ(x ,y ;z).

One can compute that

Gω,λ(x ,y ;z) =
a

λωy −b
,

where a and b do not depend on ωy .
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E
(∣∣Gω,λ(x ,y ;z)

∣∣s)=
1
λs E

(
|a|s∣∣ωy − b

λ

∣∣s
)

≤ C′

λs E

(∣∣ωy − z
λ

∣∣s |a|s∣∣ωy − b
λ

∣∣s
)

decoupling lemma

=
C′

λs E
(
|λωy − z|s

∣∣Gω,λ(x ,y ;z)
∣∣s)

where we used that
Gω,λ(x ,y ;z) =

a
λωy −b

.

Recall that we had shown that

(λωy − z)Gω,λ(x ,y ;z) = ∑
u∼y

Gω,λ(x ,u;z).

Therefore, using that (∑n |an|)s ≤ ∑n |an|s, we get

E
(∣∣Gω,λ(x ,y ;z)

∣∣s)≤ C′

λs ∑
u∼y

E
(∣∣Gω,λ(x ,u;z)

∣∣s) .
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E
(∣∣Gω,λ(x ,y ;z)

∣∣s)≤ C′

λs ∑
u∼y

E
(∣∣Gω,λ(x ,u;z)

∣∣s) .
If none of the points u is equal to x , we can iterate this argument.

E
(∣∣Gω,λ(x ,y ;z)

∣∣s)≤ C′

λs ∑
u∼y

E
(∣∣Gω,λ(x ,u;z)

∣∣s)
≤ C′

λs (]of neighbors) max
u,u∼y

E
(∣∣Gω,λ(x ,u;z)

∣∣s)
≤
(

C′

λs

)2

(]of neighbors) ∑
u′∼u

E
(∣∣Gω,λ(x ,u′;z)

∣∣s)
iterating this argument, at each step we get a factor(

C′

λs

)
(]of neighbors)
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We can iterate this argument at most ‖x− y‖ times,

E
(∣∣Gω,λ(x ,y ;z)

∣∣s)≤((C′

λs

)2

(]of neighbors)

)‖x−y‖
sup
u∈Zd

E
(∣∣Gω,λ(x ,u;z)

∣∣s)

We can bound the r.h.s using the a priori bound and get

E
(∣∣Gω,λ(x ,y ;z)

∣∣s)≤ C(ρ,s)

λs

((
C′

λs

)2

(]of neighbors)

)‖x−y‖

Finally, we take λ large enough such that((
C′

λs

)2

2d

)
< 1.

Then, we have

E
(∣∣Gω,λ(x ,y ;z)

∣∣s)≤ C(ρ,s)

λs e−C(C′,λ,s,d)‖x−y‖.
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We have shown

Theorem
Let s ∈ (0,1). Then there exists λ0 > 0 such that for λ≥ λ0, there are
constants 0 < c, C < ∞ such that

(∗) E
(∣∣〈δx ,(Hω,λ− z)−1

δy 〉
∣∣s)≤ Ce−c‖x−y‖

uniformly in x ,y ∈ Zd and z ∈ C\R.

With this result, we can prove dynamical localization, and pure point
spectrum. For a proof of dynamical localization, see Section 5 in G. Stolz’s
notes.
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Theorem (The Simon-Wolff Criterion, Simon-Wolff’86)
Let Γ be a countable set of points. Let Hω =−∆ + Vω on `2(Γ), such that the
probability distribution of the random variables, µ, is absolutely continuous.
Then, for any Borel set I :

I If for Lebesgue-a.e. E ∈ I and P-a.e. ω

lim
ε→0

∑
y∈Γ

∣∣〈δy ,(Hω− (E + iε))−1
δx〉
∣∣2 < ∞,

then for P-a.e. ω, the spectral measure of H associated to δx is pure
point in I.

I If for Lebesgue-a.e. E ∈ I and P-a.e. ω

lim
ε→0

∑
y∈Γ

∣∣〈δy ,(Hω− (E + iε))−1
δx〉
∣∣2 = ∞,

then for P-a.e. ω, the spectral measure of H associated to δx is
continuous in I.
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To prove pp spectrum, we would like to use the Simon-Wolff Criterion. Recall
our result, which holds for any given s ∈ (0,1), in the whole spectrum with λ

large enough, uniformly on z = E + iε, ε > 0,

E
(∣∣〈δx ,(Hω,λ− z)−1

δy 〉
∣∣s)≤ Ce−c‖x−y‖

Then

E

(
∑
y

∣∣〈δx ,(Hω,λ− z)−1
δy 〉
∣∣s)≤∑

y
E
(∣∣〈δx ,(Hω,λ− z)−1

δy 〉
∣∣s)< ∞.

which implies that

∑
y

∣∣〈δx ,(Hω,λ− z)−1
δy 〉
∣∣s < ∞ for P-a.e.ω ∈ Ω.

Because the bound is uniform on ε, we an take the limit when ε→ 0.
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We use the inequality : If s ∈ (0,1),(
∑
n
|an|
)s

≤∑
n
|an|s .

Take s = 1/4,(
∑
y

∣∣〈δx ,(Hω,λ− z)−1
δy 〉
∣∣2) 1

4

≤∑
y

∣∣〈δx ,(Hω,λ− z)−1
δy 〉
∣∣ 1

2 < ∞

for P-a.e. ω ∈ Ω. Therefore, by the Simon-Wolff Criterion, the spectral
measure associated to Hω and δx is pure point in the deterministic spectrum
of Hω, for P-a.e. ω ∈ Ω. Since this holds for every δx , one can deduce that

σ(Hω) = σpp(Hω) for P-a.e.ω ∈ Ω.
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Summary

We have seen for Hω,λ =−∆ + λVω that
I For any given s ∈ (0,1), for large values of λ,

(∗) E
(∣∣〈δx ,(Hω,λ− z)−1

δy 〉
∣∣s)≤ Ce−c‖x−y‖

uniformly in x ,y ∈ Zd and z ∈ C\R.
I The last expression implies the summability of the terms∣∣Gω,λ(x ,y ;E + i0)

∣∣2, almost surely, with E ∈ R.
I The Simon-Wolff theorem relates the summability of the resolvent with

the pure point spectrum or the continuous spectrum.
I The operator Hω,λ =−∆ + λVω, for large values of λ exhibits

localization in the whole spectrum.
I In the proof, it was crucial that one can isolate the dependence of the

resolvent on the random variables corresponding to one or two sites ωx .
I The other ingredient was the regularity of the probability distribution µ.
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Summary II

We have seen so far,
I The Anderson model is used to study electronic transport in a

disordered medium.
I There are different notions of localization.
I The Anderson model is an example of an ergodic operator, and it has a

deterministic spectrum, which we can compute explicitly.
I the Integrated Density of States exists and gives information on the

deterministic spectrum.

These results are also valid for the Anderson model on graphs
I There are two methods to prove localization for dimension d ≥ 2 : the

Multiscale Analysis and the Fractional Moment Method.
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Thank you !
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