Random Schrödinger Operators

Constanza RoJAs-Molina
University of Bonn

CIMPA School "Spectral Theory of Graphs and Manifolds"
Kairouan, November 2016

Outline

- Introduction
- Motivation
- Types of localization
- Appendix I : Proof of RAGE Theorem
- Appendix II : Proof of Wiener's Theorem
- The Anderson model
- Ergodic properties and spectrum
- Results on localization and spectral types
- Fractional Moment Method
- Proof of localization at large disorder
- Pure point spectrum via the Simon-Wolff criterion

Motivation

Goal : to study the electronic transport in disordered materials and identify if a material is a conductor or an insulator

Quantum mechanics setting :
physical state
physical observables
possible outcomes
a vector ψ in a Hilbert space \mathcal{H}, with $\|\psi\|=1$
self-adjoint operator H
$\sigma(H)$ spectrum of the operator H

Dynamics of a particle moving in a material : $\psi \in \mathcal{H}=L^{2}\left(\mathbb{R}^{d}\right)$ or $\ell^{2}\left(\mathbb{Z}^{d}\right)$, $\|\psi\|=1$,

$$
\begin{gathered}
\partial_{t} \psi(t, x)=-i H \psi(t, x), \\
\psi(t, x)=e^{-i t H} \psi(0, x),
\end{gathered}
$$

where $H=H_{0}+V$ is a self-adjoint Schrödinger operator on \mathcal{H}.
Example : electrons in a crystal, $H=-\Delta+V$ acting on $\ell^{2}\left(\mathbb{Z}^{d}\right)$, the potential $V \psi(x)=q(x) \psi(x)$, where q is a periodic function.

band a.c. spectrum
extended states $\sim \psi(t, x)$ propagate in space as t grows \sim transport

Dynamics of a particle moving in a material : $\psi \in \mathcal{H}=L^{2}\left(\mathbb{R}^{d}\right)$ or $\ell^{2}\left(\mathbb{Z}^{d}\right)$, $\|\psi\|=1$,

$$
\begin{gathered}
\partial_{t} \psi(t, x)=-i H \psi(t, x), \\
\psi(t, x)=e^{-i t H} \psi(0, x),
\end{gathered}
$$

where $H=H_{0}+V$ is a self-adjoint Schrödinger operator on \mathcal{H}.
Example : electrons in a disordered crystal

$\psi(t, x)$ do not propagate in space as t grows \sim absence of transport

Disordered media

P. W. Anderson 1958 :
if the medium has impurities, there is no wave propagation.
"Absence of diffusion in certain random lattices", Phys. Rev. (Nobel 1977)
Anderson model : $H_{\omega}=-\Delta+V_{\omega}$ on $\ell^{2}\left(\mathbb{Z}^{d}\right)$, with

$$
V_{\omega}(x)=\sum_{j \in \mathbb{Z}^{d}} \omega_{j} \delta_{j}(x),
$$

where $\omega=\left(\omega_{j}\right)_{j \in \mathbb{Z}^{d}}$ is a random variable in a probability space (Ω, \mathbb{P}).

Localization : first rigorous mathematical results in the late 70 s, early 80 s .

Recall from spectral theory

For a self-adjoint operator H and a vector $\varphi \in \mathcal{H}$, there exists a spectral measure $\mu_{H, \varphi}$ such that

$$
\langle\varphi, H \varphi\rangle=\int_{\mathbb{R}} \lambda d \mu_{H, \varphi}(\lambda)
$$

or, formally

$$
H=\int_{\mathbb{R}} \lambda d \mu_{H, \varphi}(\lambda)
$$

For this spectral measure $\mu=\mu_{H, \varphi}$ one has the usual Lebesgue decomposition into three mutually singular parts

$$
\mu=\mu^{p p}+\mu^{s c}+\mu^{a c}
$$

which induces a decomposition of the Hilbert space $\mathcal{H}=\mathcal{H}_{p p} \oplus \mathcal{H}_{s c} \oplus \mathcal{H}_{a c}$, such that

$$
H_{\mathcal{H}_{*}}=\int_{\mathbb{R}} \lambda d \mu_{H, \varphi}^{*}(\lambda), \quad * \in p p, s c, a c
$$

Then, writing

$$
\sigma_{*}(H)=\sigma\left(H_{\mathcal{H}_{*}}\right), \quad * \in p p, s c, a c
$$

we have the following decomposition for the spectrum

$$
\sigma(H)=\sigma_{p p}(H) \cup \sigma_{s c}(H) \cup \sigma_{a c}(H)
$$

Going back to the Anderson model $\left(H_{\omega}\right)_{\omega \in \Omega}$,

- We say that the operator H_{ω} exhibits spectral localization in an interval \mathcal{I} if $\sigma(H) \cap I=\sigma_{p p}(H) \cap I$, almost surely.
- We say that H exhibits Anderson localization (AL) in I if $\sigma(H) \cap I=\sigma_{p p}(H) \cap I$ with exponentially decaying eigenfunctions, almost surely.

In the late 70s, mathematicians thought that "AL = absence of transport", until the 90s, with the work of del Río-Jitomirskaya-Last-Simon, where they showed that there might be AL with some transport.

Dynamical localization I

- We say that H_{ω} exhibits dynamical localization (DL) in I if there exist constants $C<\infty$ and $c>0$ such that for all $x, y \in \mathbb{Z}^{d}$,

$$
\begin{equation*}
\mathbb{E}\left(\sup _{t \in \mathbb{R}}\left|\left\langle\delta_{y}, e^{-i t H_{\omega}} \chi_{l}\left(H_{\omega}\right) \delta_{x}\right\rangle\right|\right) \leq C e^{-c|x-y|} \tag{DL}
\end{equation*}
$$

Theorem (DL implies absence of transport)
If ($D L$) holds in $J \subset \mathbb{R}$, then for $\varphi \in \ell^{2}\left(\mathbb{Z}^{d}\right)$ with compact support we have

$$
\begin{aligned}
& \text { weighted space time evolution } \\
& \sup _{t}\left\|\langle X\rangle^{p / 2} e^{-i t H_{\omega}} \chi_{J}\left(H_{\omega}\right) \varphi\right\|_{2}<\infty \\
& \text { localization in energy }
\end{aligned}
$$

for every $p \geq 0$, with probability one.

Proof of theorem (DL implies absence of transport)

Recall that $|X| \varphi(n)=|n| \varphi(n)$ for $\varphi \in \ell^{2}\left(\mathbb{Z}^{d}\right)$. Take $\varphi \in \ell_{c}^{2}\left(\mathbb{Z}^{d}\right)$, that is, for some $R>0, \varphi(n)=0$ for $|n|>R$. Then, using the expression

$$
\begin{gathered}
\|x\|=\sum_{n}\left|\left\langle x, \delta_{n}\right\rangle\right|^{2} \\
\left.\left\||X|^{p} e^{-i t H_{\omega}} \chi_{l}\left(H_{\omega}\right) \varphi\right\|^{2}=\sum_{j \in \mathbb{Z}^{d}}\left|\left\langle\delta_{j},\right| X\right|^{p} e^{-i t H_{\omega}} \chi\left(H_{\omega}\right) \varphi\right\rangle\left.\right|^{2} \\
\leq \sum_{j}|j|^{2 p}\left|\left\langle\delta_{j}, e^{-i t H_{\omega}} \chi\left(H_{\omega}\right) \varphi\right\rangle\right|^{2} \\
\leq \sum_{j}|j|^{2 p}\left|\left\langle\delta_{j}, e^{-i t H_{\omega}} \chi\left(H_{\omega}\right) \varphi\right\rangle\right|\|\varphi\| \\
\leq \sum_{j}|j|^{2 p}\|\varphi\|\left|\left\langle\delta_{j}, e^{-i t H_{\omega}} \chi \chi_{l}\left(H_{\omega}\right)\left(\sum_{|k| \leq R}\left\langle\varphi, \delta_{k}\right\rangle \delta_{k}\right)\right\rangle\right| \\
\leq \sum_{j} \sum_{|k| \leq R}|j|^{2 p}\|\varphi\|^{2}\left|\left\langle\delta_{j}, e^{-i t i H_{\omega}} \chi\left(H_{\omega}\right) \delta_{k}\right\rangle\right|
\end{gathered}
$$

$$
\left\||X|^{p} e^{-i t H_{\omega}} \chi_{l}\left(H_{\omega}\right) \varphi\right\|^{2} \leq \sum_{j} \sum_{|k| \leq R}|j|^{2 p}\|\varphi\|^{2}\left|\left\langle\delta_{j}, e^{-i t H_{\omega}} \chi_{l}\left(H_{\omega}\right) \delta_{k}\right\rangle\right|
$$

Taking the expectation \mathbb{E} in both sides, we get

$$
\begin{align*}
& \mathbb{E}\left(\sup _{t}\left\||X|^{p} e^{-i t H_{\omega}} \chi_{\prime}\left(H_{\omega}\right) \varphi\right\|^{2}\right) \\
& \leq \sum_{j} \sum_{|k| \leq R}|j|^{2 p}\|\varphi\|^{2} \mathbb{E}\left(\sup _{t}\left|\left\langle\delta_{j}, e^{-i t H_{\omega}} \chi_{\prime}\left(H_{\omega}\right) \delta_{k}\right\rangle\right|\right) \\
& \leq \sum_{j} \sum_{|k| \leq R}|j|^{2 p}\|\varphi\|^{2} C e^{-c|j-k|} \tag{DL}\\
&<\infty
\end{align*}
$$

Finally, if $\mathbb{E}(f)<\infty$, then $f<\infty$ a.s. Therefore, for any $p \geq 0$,

$$
\sup _{t}\left\||X|^{p} e^{-i t H_{\omega}} \chi_{l}\left(H_{\omega}\right) \varphi\right\|^{2}<\infty \quad \text { a.s. }
$$

Dynamical localization II

Recall that

- We say that H_{ω} exhibits dynamical localization (DL) in I if there exist constants $C<\infty$ and $c>0$ such that for all $x, y \in \mathbb{Z}^{d}$,

$$
(D L) \quad \mathbb{E}\left(\sup _{t \in \mathbb{R}}\left|\left\langle\delta_{y}, e^{-i t H_{\omega}} \chi_{I}\left(H_{\omega}\right) \delta_{x}\right\rangle\right|\right) \leq C e^{-c|x-y|}
$$

Theorem (DL implies pure point spectrum)
If ($D L$) holds in an interval I, then H_{ω} has pure point spectrum in I with probability one.

The proof relies on the RAGE Theorem.

Theorem (Ruelle-Amrein-Georgescu-Enss)

Let H be a s.a. operator on $\ell^{2}\left(\mathbb{Z}^{d}\right)$, let P_{c} and $P_{p p}$ be the orthogonal projections onto \mathcal{H}_{c} and $\mathcal{H}_{p p}$, resp. Let Λ_{L} be a cube of side L around the origin. Then, for any $\varphi \in \ell^{2}\left(\mathbb{Z}^{d}\right)$,

$$
\begin{aligned}
& \left\|P_{c} \varphi\right\|^{2}=\lim _{L \rightarrow \infty} \lim _{T \rightarrow \infty} \frac{1}{T} \int_{0}^{T}\left(\sum_{x \notin \Lambda_{L}}\left|e^{-i t H} \varphi(x)\right|^{2}\right) d t \\
& \left\|P_{p p} \varphi\right\|^{2}=\lim _{L \rightarrow \infty} \lim _{T \rightarrow \infty} \frac{1}{T} \int_{0}^{T}\left(\sum_{x \in \Lambda_{L}}\left|e^{-i t H} \varphi(x)\right|^{2}\right) d t
\end{aligned}
$$

Take $\varphi \in \ell_{c}\left(\mathbb{Z}^{d}\right)$, that is, for some $R>0, \varphi(n)=0$ for $|n|>R$. From RAGE Theorem we have that

$$
\left\|P_{c}\left(H_{\omega}\right) \chi_{I}\left(H_{\omega}\right) \varphi\right\|^{2}=\lim _{L \rightarrow \infty} \lim _{T \rightarrow \infty} \frac{1}{T} \int_{0}^{T}\left(\sum_{x \notin \Lambda_{L}}\left|e^{-i t H} \chi_{l}\left(H_{\omega}\right) \varphi(x)\right|^{2}\right) d t
$$

Note that

$$
\begin{aligned}
& \sum_{x \notin \Lambda_{L}}\left|e^{-i t H} \chi_{I}\left(H_{\omega}\right) \varphi(x)\right|^{2}=\left\|\chi_{\Lambda_{L}} e^{-i t H} \chi_{I}\left(H_{\omega}\right) \varphi\right\|^{2}=\left\|\chi_{\Lambda_{L}} e^{-i t H} \chi_{I}\left(H_{\omega}\right) \chi_{\Lambda_{R}} \varphi\right\|^{2} \\
& \leq\left\|\chi_{\Lambda_{L}^{c}} e^{-i t H} \chi_{I}\left(H_{\omega}\right) \chi_{\Lambda_{R}}\right\|\|\varphi\|^{2} \\
& \leq \sum_{|x| \geq L|k| \leq R} \sum_{\left|\left\langle\delta_{x}, e^{-i t H} \chi_{l}\left(H_{\omega}\right) \delta_{k}\right\rangle\right|\|\varphi\|^{2}, ~}^{\text {and }}
\end{aligned}
$$

Taking the expectation \mathbb{E} in both sides, and using Fatou's lemma and Fubini, yields

$$
\begin{aligned}
& \mathbb{E}\left(\left\|P_{c}\left(H_{\omega}\right) \chi_{\prime}\left(H_{\omega}\right) \varphi\right\|^{2}\right) \\
& \leq \lim _{L \rightarrow \infty} \lim _{T \rightarrow \infty} \frac{1}{T} \int_{0}^{T} \sum_{|x| \geq L|k| \leq R} \sum_{\mid \varphi \|^{2}} \mathbb{E}\left(\left|\left\langle\delta_{x}, e^{-i t H} \chi_{l}\left(H_{\omega}\right) \delta_{k}\right\rangle\right|\right)
\end{aligned}
$$

$$
\begin{aligned}
& \mathbb{E}\left(\left\|P_{c}\left(H_{\omega}\right) \chi_{\prime}\left(H_{\omega}\right) \varphi\right\|^{2}\right) \\
& \leq \lim _{L \rightarrow \infty} \lim _{T \rightarrow \infty} \frac{1}{T} \int_{0}^{T} \sum_{|x| \geq L|k| \leq R} \sum_{\mid \varphi \|^{2}} \mathbb{E}\left(\left|\left\langle\delta_{x}, e^{-i t H} \chi_{l}\left(H_{\omega}\right) \delta_{k}\right\rangle\right|\right)
\end{aligned}
$$

Note that by hypothesis (dynamical localization),

$$
\mathbb{E}\left(\left|\left\langle\delta_{x}, e^{-i t H} \chi_{l}\left(H_{\omega}\right) \delta_{k}\right\rangle\right|\right) \leq C e^{-c|x-k|}
$$

uniformly in t, then

$$
\mathbb{E}\left(\left\|P_{c}\left(H_{\omega}\right) \chi_{l}\left(H_{\omega}\right) \varphi\right\|^{2}\right) \leq C\|\varphi\|^{2} \lim _{L \rightarrow \infty} \sum_{|x| \geq L|k| \leq R} \sum e^{-c|x-k|}
$$

Since the sum in the r.h.s is convergent, the limit when $R \rightarrow \infty$ is 0 . Then

$$
\mathbb{E}\left(\left\|P_{c}\left(H_{\omega}\right) \chi_{l}\left(H_{\omega}\right) \varphi\right\|^{2}\right)=0
$$

implies $P_{c}\left(H_{\omega}\right) \chi_{\prime}\left(H_{\omega}\right) \varphi=0$ for almost every $\omega \in \Omega$ and $\varphi \in \ell_{c}\left(\mathbb{Z}^{d}\right)$. Since $\ell_{c}\left(\mathbb{Z}^{d}\right)$ is dense in $\ell^{2}\left(\mathbb{Z}^{d}\right)$, the result follows.

Alternative proof (absence of transport implies pure point spectrum).
Take $\varphi \in \ell_{c}\left(\mathbb{Z}^{d}\right)$, that is, for some $R>0, \varphi(n)=0$ for $|n|>R$. From RAGE Theorem we have that

$$
\left\|P_{c}\left(H_{\omega}\right) \chi_{I}\left(H_{\omega}\right) \varphi\right\|^{2}=\lim _{L \rightarrow \infty} \lim _{T \rightarrow \infty} \frac{1}{T} \int_{0}^{T}\left(\sum_{x \notin \wedge_{L}}\left|e^{-i t H} \chi_{l}\left(H_{\omega}\right) \varphi(x)\right|^{2}\right) d t
$$

Note that

$$
\begin{aligned}
\sum_{x \notin \Lambda_{L}}\left|e^{-i t H} \chi_{l}\left(H_{\omega}\right) \varphi(x)\right|^{2} & \leq \sum_{x \notin \Lambda_{L}} \frac{1}{|x|^{2 p}} \|\left.\left. X\right|^{p} e^{-i t H} \chi_{I}\left(H_{\omega}\right) \varphi(x)\right|^{2} \\
& \leq\left\||X|^{p} e^{-i t H} \chi_{l}\left(H_{\omega}\right) \varphi(x)\right\|^{2} \sum_{x \notin \Lambda_{L}} \frac{1}{|x|^{2 p}}
\end{aligned}
$$

Therefore,

$$
\lim _{T \rightarrow \infty} \frac{1}{T} \int_{0}^{T}\left\||X|^{p} e^{-i t H} \chi_{I}\left(H_{\omega}\right) \varphi(x)\right\|^{2} d t<C
$$

Which leaves

$$
\left\|P_{c}\left(H_{\omega}\right) \chi_{l}\left(H_{\omega}\right) \varphi\right\|^{2} \leq C \lim _{L \rightarrow \infty} \sum_{x \notin \Lambda_{L}} \frac{1}{|x|^{2 p}}=0
$$

Summary

- Transport of electrons in materials is studied by looking at dynamical properties of Schrödinger operators.
- There is a relation between spectral and dynamical properties, but they are not equivalent!
- Disordered materials are represented by random Schrödinger operators
- Random Schrödinger operators exhibit localization in some regions of the spectrum
- The right notion of localization is dynamical localization (physically relevant)

What P.W. Anderson observed in '58 is...
dynamical localization.

Proof of RAGE Theorem

Theorem (Ruelle-Amrein-Georgescu-Enss)

Let H be a s.a. operator on $\ell^{2}\left(\mathbb{Z}^{d}\right)$, let P_{c} and $P_{p p}$ be the orthogonal projections onto \mathcal{H}_{c} and $\mathcal{H}_{p p}$, resp. Let Λ_{L} be a cube of side L around the origin. Then, for any $\varphi \in \ell^{2}\left(\mathbb{Z}^{d}\right)$,

$$
\begin{aligned}
& \left\|P_{c} \varphi\right\|^{2}=\lim _{L \rightarrow \infty} \lim _{T \rightarrow \infty} \frac{1}{T} \int_{0}^{T}\left(\sum_{x \notin \Lambda_{L}}\left|e^{-i t H} \varphi(x)\right|^{2}\right) d t \\
& \left\|P_{p p} \varphi\right\|^{2}=\lim _{L \rightarrow \infty} \lim _{T \rightarrow \infty} \frac{1}{T} \int_{0}^{T}\left(\sum_{x \in \Lambda_{L}}\left|e^{-i t H} \varphi(x)\right|^{2}\right) d t
\end{aligned}
$$

Proof :

- Characterization of $\psi \in \mathcal{H}_{p p}$
- Characterization of $\psi \in \mathcal{H}_{a c}$
- Characterization of $\psi \in \mathcal{H}_{c}$
- Proof of Theorem

Characterization of $\psi \in \mathcal{H}_{p p}$

Theorem

Let H be a self-adjoint operator in $\ell^{2}\left(\mathbb{Z}^{d}\right)$. Take $\varphi \in \mathcal{H}_{p p}$ and let $\Lambda_{L}:=[-L, L]^{d} \cap \mathbb{Z}^{d}$. Then

$$
\lim _{L \rightarrow \infty} \sup _{t}\left(\sum_{x \in \Lambda_{L}}\left|e^{-i t H} \varphi(x)\right|^{2}\right)=\|\varphi\|^{2}
$$

and

$$
\text { (*) } \quad \lim _{L \rightarrow \infty} \sup _{t}\left(\sum_{x \notin \Lambda_{L}}\left|e^{-i t h} \varphi(x)\right|^{2}\right)=0
$$

Proof:

1) the case φ is an eigenfunction
2) φ is a finite linear combination of eigenfunctions
3) $\varphi \in \mathcal{H}_{p p}$

Since $e^{-i t H}$ is unitary, for all t we have

$$
\begin{aligned}
\|\varphi\|^{2}=\left\|e^{-i t H} \varphi\right\|^{2} & =\sum_{x \in \mathbb{Z}^{d}}\left|\left\langle\delta_{x}, e^{-i t H} \varphi\right\rangle\right|^{2} \\
& =\sum_{x \in \Lambda_{L}}\left|\left(e^{-i t H} \varphi\right)(x)\right|^{2}+\sum_{x \notin \Lambda_{L}}\left|\left(e^{-i t H} \varphi\right)(x)\right|^{2}
\end{aligned}
$$

1) Let φ be an eigenfunction with eigenvalue E, $\left(e^{-i t H} \varphi\right)(x)=e^{-i t E} \varphi(x)$, so $\left|\left(e^{-i t h} \varphi\right)(x)\right|=|\varphi(x)|$ uniformly on t. Therefore, since $\varphi \in \ell^{2}\left(\mathbb{Z}^{d}\right)$,

$$
\sum_{x \notin \Lambda_{L}}\left|\left(e^{-i t H} \varphi\right)(x)\right|^{2}=\sum_{x \notin \Lambda_{L}}|\varphi(x)|^{2} \rightarrow 0, \text { when } L \rightarrow \infty
$$

Next, note that $(*)$ can be written as

$$
\left\|\chi_{\wedge_{L}^{c}} e^{-i t H} \varphi\right\| \rightarrow_{L \rightarrow \infty} 0 \quad \text { uniformly in } t
$$

2) Let φ be the finite linear combination of eigenfunctions $\varphi_{k} \varphi=\sum_{k=1}^{N} a_{k} \varphi_{k}$. Then

$$
\begin{aligned}
\left\|\chi_{\Lambda_{L}^{c}} e^{-i t H} \varphi\right\|=\left\|\sum_{k=1}^{N} a_{k} \chi_{\Lambda_{L}^{c}} e^{-i t H} \varphi_{k}\right\| & \leq \sum_{k=1}^{N}\left|a_{k}\right|\left\|\chi_{\Lambda_{L}^{c}} e^{-i t H} \varphi_{k}\right\| \\
& =\sum_{k=1}^{N}\left|a_{k}\right|\left\|\chi_{\Lambda_{L}^{c}} e^{-i t E} \varphi_{k}\right\| \\
& =\sum_{k=1}^{N}\left|a_{k}\right|\left\|\chi_{\Lambda_{L}^{c}} \varphi_{k}\right\|
\end{aligned}
$$

Since $\varphi_{k} \in \ell^{2}\left(\mathbb{Z}^{d}\right),\left\|\chi_{\Lambda_{L}^{c}} \varphi_{k}\right\| \rightarrow 0$. So we can take L large enough depending on N in order to make the r.h.s. as small as we want, uniformly in t.
3) Let $\varphi \in \mathcal{H}_{p p}$. There exists a sequence of linear combinations of eigenfunctions $\varphi_{N}:=\sum_{k=1}^{N} a_{k} \varphi_{k}$ such that, given $\varepsilon>0,\left\|\varphi-\varphi_{N}\right\|<\varepsilon$ for N large enough. Then

$$
\begin{aligned}
\left\|\chi_{\Lambda_{L}^{c}} e^{-i t H} \varphi\right\| & \leq\left\|\chi_{\Lambda_{L}^{c}} e^{-i t H}\left(\varphi-\varphi_{N}\right)\right\|+\left\|\chi_{\Lambda_{L}^{c}} e^{-i t H}\left(\varphi_{N}\right)\right\| \\
& \leq\left\|e^{-i t H}\left(\varphi-\varphi_{N}\right)\right\|+\left\|\chi_{\Lambda_{L}^{c}} e^{-i t H}\left(\varphi_{N}\right)\right\|
\end{aligned}
$$

By taking N large enough, $\left\|\varphi-\varphi_{N}\right\|<\varepsilon / 2$, while by taking L large enough, depending on N, we have $\left\|\chi_{\Lambda_{L}^{c}} e^{-i t H}\left(\varphi_{N}\right)\right\|<\varepsilon / 2$, therefore

$$
\left\|\chi_{\Lambda_{L}^{c}} e^{-i t h} \varphi\right\|<\varepsilon \quad \text { uniformly in } t
$$

which yields

$$
\left\|\chi_{\Lambda_{L}^{c}} e^{-i t h} \varphi\right\|_{L \rightarrow \infty} 0
$$

Characterization of $\psi \in \mathcal{H}_{a c}$

Theorem

Let H be a self-adjoint operator in $\ell^{2}\left(\mathbb{Z}^{d}\right)$. Take $\varphi \in \mathcal{H}_{a c}$ and let Λ_{L} be a finite set in \mathbb{Z}^{d}. Then

$$
\lim _{t \rightarrow \infty}\left(\sum_{x \in \Lambda_{L}}\left|e^{-i t h} \varphi(x)\right|^{2}\right)=0
$$

and

$$
\lim _{t \rightarrow \infty}\left(\sum_{x \notin \wedge_{L}}\left|e^{-i t H} \varphi(x)\right|^{2}\right)=\|\varphi\|^{2}
$$

Note that

$$
\left\langle\psi, e^{-i t H} \varphi\right\rangle=\int e^{-i t \lambda} d \mu_{\psi, \varphi}(\lambda)
$$

where $d \mu_{\psi, \varphi}(\lambda)$ is the spectral measure associated to ψ and φ in $\ell^{2}\left(\mathbb{Z}^{d}\right)$. If $\varphi \in \mathcal{H}_{a c}$, then $d \mu_{\psi, \varphi}$ is a.c. with respect to the Lebesgue measure, i.e., there exists a function $g \in L^{1}(\mathbb{R}, d \lambda)$ such that

$$
d \mu_{\psi, \varphi}(\lambda)=g(\lambda) d \lambda .
$$

Then,

$$
\left\langle\psi, e^{-i t H} \varphi\right\rangle=\int e^{-i t \lambda} g(\lambda) d \lambda
$$

which is the Fourier transform of g. By the Riemann-Lebesgue Lemma, the r.h.s. tends to 0 in absolute value, as $t \rightarrow \infty$.

Taking $\psi=\delta_{X}$, we get

$$
\left|\left(e^{-i t H} \varphi\right)(x)\right|=\left|\left\langle\delta_{x}, e^{-i t H} \varphi\right\rangle\right| \rightarrow_{t \rightarrow \infty} 0
$$

Taking now the vector $\chi_{\Lambda_{L}}=\sum_{x \in \Lambda_{L}} \delta_{x} \in \ell^{2}\left(\mathbb{Z}^{d}\right)$ we get the desired result.

Characterization of $\varphi \in \mathcal{H}_{C}$

Now, we want an expression for $\varphi \in \mathcal{H}_{c}$, not just $\mathcal{H}_{a c}$. The following will be useful,

Theorem (Wiener)
Let μ be a bounded Borel measure on \mathbb{R}. Then

$$
\lim _{T \rightarrow \infty} \frac{1}{T} \int_{0}^{T}|\hat{\mu}(t)|^{2} d t=\sum_{x \text { atom of } \mu}|\mu(\{x\})|^{2},
$$

where $\hat{\mu}(t)=\int e^{-i t \lambda} d \mu(\lambda)$ is the Fourier transform of the measure μ. If μ is continuous, the r.h.s. is 0 .

Theorem

Let H be a self-adjoint operator in $\ell^{2}\left(\mathbb{Z}^{d}\right)$. Take $\varphi \in \mathcal{H}_{C}$ and let Λ_{L} be a finite set in \mathbb{Z}^{d}. Then

$$
\lim _{T \rightarrow \infty} \frac{1}{T} \int_{0}^{T}\left(\sum_{x \in \Lambda_{L}}\left|e^{-i t H} \varphi(x)\right|^{2}\right)=0
$$

and

$$
\lim _{T \rightarrow \infty} \frac{1}{T} \int_{0}^{T}\left(\sum_{x \notin \Lambda_{L}}\left|e^{-i t H} \varphi(x)\right|^{2}\right)=\|\varphi\|^{2}
$$

Proof : for $\varphi \in \mathcal{H}_{c}$, for any $x \in \mathbb{Z}^{d}$, the measure $\mu_{\delta_{x}, \varphi}$ is continuous. Using Wiener, we have

$$
\lim _{T \rightarrow \infty} \frac{1}{T} \int_{0}^{T}\left|\int e^{-i t \lambda} d \mu_{\delta_{x}, \varphi}(\lambda)\right|^{2} d t=0
$$

Note that $\left|\int e^{-i t \lambda} d \mu_{\delta_{x}, \varphi}(\lambda)\right|^{2}=\left|\left\langle\delta_{x}, e^{-i t H} \varphi\right\rangle\right|^{2}=\left|e^{-i t H} \varphi(x)\right|^{2}$. Taking the vector $\chi_{\Lambda_{L}}=\sum_{x \in \Lambda_{L}} \delta_{x}$ gives the claim.

Proof of RAGE Theorem

Theorem (Ruelle-Amrein-Georgescu-Enss)

Let H be a s.a. operator on $\ell^{2}\left(\mathbb{Z}^{d}\right)$, let P_{c} and $P_{p p}$ be the orthogonal projections onto \mathcal{H}_{c} and $\mathcal{H}_{p p}$, resp. Let Λ_{L} be a cube of side L around the origin. Then, for any $\varphi \in \ell^{2}\left(\mathbb{Z}^{d}\right)$,

$$
\begin{aligned}
& \left\|P_{c} \varphi\right\|^{2}=\lim _{L \rightarrow \infty} \lim _{T \rightarrow \infty} \frac{1}{T} \int_{0}^{T}\left(\sum_{x \notin \Lambda_{L}}\left|e^{-i t H} \varphi(x)\right|^{2}\right) d t \\
& \left\|P_{p p} \varphi\right\|^{2}=\lim _{L \rightarrow \infty} \lim _{T \rightarrow \infty} \frac{1}{T} \int_{0}^{T}\left(\sum_{x \in \Lambda_{L}}\left|e^{-i t H} \varphi(x)\right|^{2}\right) d t
\end{aligned}
$$

Proof:

$$
\begin{array}{r}
\left\|P_{c} \varphi\right\|^{2}=\left\|e^{-i t H} P_{c} \varphi\right\|^{2}=\sum_{x \in \Lambda_{L}}\left|e^{-i t H} P_{c} \varphi(x)\right|^{2}+\sum_{x \notin \Lambda_{L}}\left|e^{-i t H}\left(\varphi-P_{p p} \varphi\right)(x)\right|^{2} \\
\sum_{x \notin \Lambda_{L}}\left|e^{-i t H}\left(\varphi-P_{p p} \varphi\right)(x)\right|^{2}=\sum_{x \notin \Lambda_{L}}\left|e^{-i t H} \varphi\right|^{2}+\sum_{x \notin \Lambda_{L}}\left|e^{-i t H} P_{p p} \varphi\right|^{2} \\
\quad+\sum_{x \notin \wedge_{L}} 2 R e\left(e^{-i t H} \varphi(x)\right) \overline{\left(e^{-i t H} P_{p p} \varphi(x)\right)}
\end{array}
$$

Using Cauchy-Schwarz, one can show that
$|\mathcal{E}|:=\left|\sum_{x \neq \Lambda_{L}} 2 \operatorname{Re}\left(e^{-i t H} \varphi(x)\right) \overline{\left(e^{-i t H} P_{p p} \varphi(x)\right)}\right| \leq\|\varphi\|^{2}\left(\sup _{t} \sum_{x \neq \Lambda_{L}} \mid\left(e^{-i t H} P_{p p} \varphi(x)\right)^{2}\right)^{1 / 2}$
Recalling the characterization for $P_{p p} \varphi$, taking $\lim _{L \rightarrow \infty}$, the r.h.s. tends to 0.

We get

$$
\left\|P_{c} \varphi\right\|^{2}=\sum_{x \in \Lambda_{L}}\left|e^{-i t H} P_{c} \varphi(x)\right|^{2}+\sum_{x \notin \Lambda_{L}}\left|e^{-i t H} \varphi\right|^{2}+\sum_{x \notin \Lambda_{L}}\left|e^{-i t H} P_{p p} \varphi\right|^{2}+\mathcal{E}
$$

We take $\frac{1}{T} \int_{0}^{T}$ in both sides and note that $\frac{1}{T} \int_{0}^{T}\left\|P_{c} \varphi\right\|^{2}=\left\|P_{c} \varphi\right\|^{2}$,

$$
\begin{gathered}
\left\|P_{c} \varphi\right\|^{2}=\frac{1}{T} \int_{0}^{T} \sum_{x \in \Lambda_{L}}\left|e^{-i t H} P_{c} \varphi(x)\right|^{2}+\frac{1}{T} \int_{0}^{T} \sum_{x \notin \Lambda_{L}}\left|e^{-i t H} \varphi\right|^{2} \\
+\frac{1}{T} \int_{0}^{T} \sum_{x \notin \Lambda_{L}}\left|e^{-i t H} P_{p p} \varphi\right|^{2}+\mathcal{E}
\end{gathered}
$$

Taking $\lim _{L \rightarrow \infty} \lim _{T \rightarrow \infty}$, we can use the characterizations obtained for \mathcal{H}_{C} and $\mathcal{H}_{p p}$ and the fact that the error goes to 0 , to finally obtain

$$
\left\|P_{C} \varphi\right\|^{2}=\lim _{L \rightarrow \infty} \lim _{T \rightarrow \infty} \frac{1}{T} \int_{0}^{T} \sum_{x \notin \Lambda_{L}}\left|e^{-i t t H} \varphi\right|^{2}
$$

References

- W. Kirsch, An invitation to Random Schrödinger Operators, in Random Schrödinger Operators, Panoramas et Syntheses Vol. 25, 2008 (SMF).
- G. Stolz, An introduction to the mathematics of Anderson localization, Contemporary Mathematics 551, 2010.

Recall that in RAGE Theorem, given a self-adjoint operator H, we have the following expression for any $\varphi \in \ell^{2}\left(\mathbb{Z}^{d}\right)$,

$$
\left\|P_{c} \varphi\right\|^{2}=\lim _{L \rightarrow \infty} \lim _{T \rightarrow \infty} \frac{1}{T} \int_{0}^{T}\left(\sum_{x \notin \Lambda_{L}}\left|e^{-i t H} \varphi(x)\right|^{2}\right) d t .
$$

To prove this we used :
Theorem (Wiener)
Let μ be a bounded Borel measure on \mathbb{R}. Then

$$
\lim _{T \rightarrow \infty} \frac{1}{T} \int_{0}^{T}|\hat{\mu}(t)|^{2} d t=\sum_{x \operatorname{atom} \text { of } \mu}|\mu(\{x\})|^{2},
$$

where $\hat{\mu}(t):=\int e^{-i t \lambda} d \mu(\lambda)$ is the Fourier transform of the measure μ. In particular, if μ is continuous, the r.h.s. is 0 .

Note that if $d \mu=\mu_{\delta_{x}, \varphi}$ is the spectral measure of H associated to the vectors δ_{x} and φ, we have that

$$
\hat{\mu}(t)=\int e^{-i t \lambda} d \mu_{\delta_{x}, \varphi}(\lambda)=\left\langle\delta_{x}, e^{-i t H} \varphi\right\rangle=e^{-i t H} \varphi(x),
$$

so Wiener's theorem gives that

$$
\lim _{T \rightarrow \infty} \frac{1}{T} \int_{0}^{T}\left|e^{-i t H} \varphi(x)\right|^{2} d t=\sum_{\lambda \text { atom of } \mu}\left|\mu_{\delta_{x}, \varphi}(\{\lambda\})\right|^{2}
$$

Moreover, if $\varphi \in \mathcal{H}_{c}$ for H, then $\mu_{\delta_{x}, \varphi}$ is also continuous measure (it has no atoms). Indeed, for any $u \in \mathbb{R}$:

$$
\mu_{\delta_{x}, \varphi}(\{u\})=\left\langle\delta_{x}, \chi_{\{u\}} \varphi\right\rangle \leq\left\|\delta_{x}\right\|\left\|\chi_{\{u\}} \varphi\right\|=\mu_{\varphi}(\{u\})=0 .
$$

Therefore,

$$
\lim _{T \rightarrow \infty} \frac{1}{T} \int_{0}^{T}\left|e^{-i t H} \varphi(x)\right|^{2} d t=0
$$

Proof of Wiener's Theorem

Theorem (Wiener)
Let μ be a bounded Borel measure on \mathbb{R}. Then

$$
\lim _{T \rightarrow \infty} \frac{1}{T} \int_{0}^{T}|\hat{\mu}(t)|^{2} d t=\sum_{x \text { atom of } \mu}|\mu(\{x\})|^{2},
$$

where $\hat{\mu}(t):=\int e^{-i t \lambda} d \mu(\lambda)$ is the Fourier transform of the measure μ.
Proof :

$$
\begin{aligned}
\frac{1}{T} \int_{0}^{T}\left|\int e^{-i t \lambda} d \mu(\lambda)\right|^{2} d t & =\frac{1}{T} \int_{0}^{T}\left(\int e^{-i t \lambda} d \mu(\lambda)\right)\left(\int e^{-i t v} d \mu(v)\right) d t \\
& =\frac{1}{T} \int_{0}^{T}\left(\int e^{-i t \lambda} d \mu(\lambda)\right)\left(\int \overline{e^{-i t v}} d \bar{\mu}(v)\right) d t \\
& =\frac{1}{T} \int_{0}^{T}\left(\int e^{-i t \lambda} d \mu(\lambda)\right)\left(\int e^{i t v} d \bar{\mu}(v)\right) d t
\end{aligned}
$$

$$
\begin{aligned}
\frac{1}{T} \int_{0}^{T}\left|\int e^{-i t \lambda} d \mu(\lambda)\right|^{2} d t & =\frac{1}{T} \int_{0}^{T}\left(\int e^{-i t \lambda} d \mu(\lambda)\right)\left(\int e^{i t v} d \bar{\mu}(v)\right) d t \\
& =\frac{1}{T} \int_{0}^{T} \iint e^{-i t(\lambda-v)} d \mu(\lambda) d \bar{\mu}(v) d t \\
& =\iint \frac{1}{T} \int_{0}^{T} e^{-i t(\lambda-v)} d t d \mu(\lambda) d \bar{\mu}(v)
\end{aligned}
$$

- Note that

$$
\left|\frac{1}{T} \int_{0}^{T} e^{-i t(\lambda-v)} d t\right| \leq 1
$$

- If $\lambda \neq v$,

$$
\begin{aligned}
\frac{1}{T} \int_{0}^{T} e^{-i t(\lambda-v)} d t & =-\left.\frac{1}{T} \frac{e^{-i t(\lambda-v)}}{i(\lambda-v)}\right|_{0} ^{T} \\
& =\frac{1}{i T(\lambda-v)}\left(1-e^{-i T(\lambda-v)}\right)
\end{aligned}
$$

Then

$$
\lim _{T \rightarrow \infty} \frac{1}{T} \int_{0}^{T} e^{-i t(\lambda-v)} d t=0
$$

- If $\lambda=v$,

$$
\frac{1}{T} \int_{0}^{T} e^{-i t(\lambda-v)} d t=1
$$

Therefore, we have that the function

$$
f(T, \lambda, v):=\frac{1}{T} \int_{0}^{T} e^{-i t(\lambda-v)} d t
$$

is such that $|f| \leq 1, f(T, \lambda, v) \rightarrow 0$ for $\lambda \neq v$ and $f=1$ for $\lambda=v$. Therefore, pointwise, when $T \rightarrow \infty$

$$
f(T, \lambda, v) \rightarrow \chi_{\{(x, y) ; x=y\}}(\lambda, v) .
$$

Next we use Lebesgue's dominated convergence theorem to show

$$
\begin{aligned}
\lim _{T \rightarrow \infty} \iint f(T, \lambda, u) d \mu(\lambda) d \bar{\mu}(v) & =\iint \chi_{\{(x, y) ; x=y\}}(\lambda, v) d \mu(\lambda) d \bar{\mu}(v) \\
& =\int \mu(\{v\}) d \bar{\mu}(v) \\
& =\sum_{v \text { atom of } \mu}|\mu(\{v\})|^{2} .
\end{aligned}
$$

Previously on...

Last time we saw that electronic transport in disordered materials is studied using a random Schrödinger operator of the form

$$
H_{\omega}=-\Delta+V_{\omega}, \quad \omega \in \Omega
$$

where $(\Omega, \mathcal{B}, \mathbb{P})$ is a certain probability space.

At very strong disorder, there is no propagation of waves. The material is therefore an insulator. Mathematically, this is described by the notion of dynamical localization.

Absence of transport in the material represented by H_{ω} is described as : for any $\varphi \in \ell_{c}\left(\mathbb{Z}^{d}\right)$,

$$
\sup _{t}\left\||X|^{p} e^{-i t H_{\omega}} \chi_{l}\left(H_{\omega}\right) \varphi\right\|<\infty
$$

for all $p \geq 0$ and for \mathbb{P}-a.e. $\omega \in \Omega$.
Types of localization

- We say that the operator H_{ω} exhibits spectral localization in an interval I if $\sigma(H) \cap I=\sigma_{p p}(H) \cap I$, a.s.
- We say that H exhibits Anderson localization (AL) in I if $\sigma(H) \cap I=\sigma_{p p}(H) \cap I$ with exponentially decaying eigenfunctions, a.s.
- We say that H_{ω} exhibits dynamical localization (DL) in I if there exist constants $C<\infty$ and $c>0$ such that for all $x, y \in \mathbb{Z}^{d}$,

$$
\begin{align*}
& \mathbb{E}\left(\sup _{t \in \mathbb{R}}\left|\left\langle\delta_{y}, e^{-i t H_{\omega}} \chi\left(H_{\omega}\right) \delta_{x}\right\rangle\right|\right) \leq C e^{-c|x-y|} \tag{DL}\\
& D L \Rightarrow \text { absence of transport } \\
& D L \Rightarrow \mathrm{AL} \Rightarrow \text { pp spectrum }
\end{align*}
$$

The Anderson model

Ergodic properties and spectrum

Some definitions from probability

- We consider a probability space $(\Omega, \mathcal{B}, \mathbb{P})$, where \mathcal{B} is a σ-algebra and \mathbb{P} is a probability measure on (Ω, \mathcal{B}).
- Given a probability space $(\Omega, \mathcal{B}, \mathbb{P})$, a random variable is a measurable function $X: \Omega \rightarrow \mathbb{R}$.
- The probability distribution of X is the measure μ defined by

$$
\mu(A)=\mathbb{P}(\{\omega \in \Omega ; X(\omega) \in A\})
$$

- The support of the measure μ is given by

$$
\operatorname{supp} \mu:=\{\mathrm{x} \in \mathbb{R} ; \mu([\mathrm{x}-\varepsilon, \mathrm{x}+\varepsilon])>0, \forall \varepsilon>0\}
$$

- If for any $A \in \mathcal{B}, \mathbb{P}(Y(\omega) \in A)=\mathbb{P}(X(\omega) \in A)=\mu(A)$, we say X and Y are identically distributed.
- A collection of random variables $\left\{X_{i}\right\}_{i \in \mathbb{Z}^{d}}$ is called a stochastic process.
- A collection of random variables $\left\{X_{n}\right\}$ is called independent if, for any finite subset $\left\{n_{1}, \ldots n_{k}\right\} \subset \mathbb{Z}^{d}$ and abritrary Borel sets $A_{1}, \ldots, A_{k} \subset \mathbb{R}$,

$$
\mathbb{P}\left(X_{n_{1}}(\omega) \in A_{1}, \ldots, X_{n_{k}}(\omega) \in A_{k}\right)=\prod_{j=1}^{k} \mathbb{P}\left(X_{n_{j}}(\omega) \in A_{j}\right)
$$

- If the collection of random variables $\left\{X_{n}\right\}$ is independent and identically distributed (i.i.d.), we have

$$
\mathbb{P}\left(X_{1}(\omega) \in A, \ldots, X_{k}(\omega) \in A\right)=\prod_{j=1}^{k} \mu(A)
$$

- We will often consider $(\Omega, \mathcal{B}, \mathbb{P})=\left(\mathbb{R}^{\mathbb{Z}^{d}}, \mathcal{B}_{\mathbb{R}}, \underset{n \in \mathbb{Z}^{d}}{\otimes} \mu\right)$, where $\mathbb{R}^{\mathbb{Z}^{d}}:=\underset{j \in \mathbb{Z}^{d}}{ } \mathbb{R}$ and write $\omega:=\left(\omega_{n}\right)_{n \in \mathbb{Z}^{d}}$ instead of $\left\{X_{n}(\omega)\right\}_{n \in \mathbb{Z}^{d}}$.

The Anderson model

$$
H_{\omega}=-\Delta+\sum_{j \in \mathbb{Z}^{d}} \omega_{j} P_{\delta_{j}} \quad \text { on } \ell^{2}\left(\mathbb{Z}^{d}\right)
$$

where $P_{\delta_{j}}=\left\langle\delta_{j}, \cdot\right\rangle \delta_{j}$.

- $-\Delta$ is the discrete Laplacian

$$
-\Delta \varphi(n)=\sum_{m \sim n} \varphi(m)-\varphi(n)
$$

- ω_{j} are i.i.d. random variables, with probability distribution μ with compact support \mathbb{A}.
- $\Omega:=\mathbb{A}^{\mathbb{Z}^{d}} \ni \omega:=\left(\omega_{j}\right)$. The probability space is the product space $(\Omega, \mathcal{B}, \mathbb{P})$ with the product σ-algebra of Borel sets \mathcal{B} and the product probability measure

$$
\mathbb{P}=\bigotimes_{j \in \mathbb{Z}^{d}} \mu
$$

Analogously, we can define the Anderson model on $\ell^{2}(\Gamma)$, for Γ a countable set. For ex., on a tree with branching number K, called the Bethe lattice \mathbb{B}.

The Anderson model

$$
H_{\omega}=-\Delta+\underbrace{\sum_{j \in \mathbb{Z}^{d}} \omega_{j} P_{\delta_{j}}}_{V_{\omega}} \text { on } \ell^{2}\left(\mathbb{Z}^{d}\right)
$$

where $P_{\delta_{j}}=\left\langle\delta_{j}, \cdot\right\rangle \delta_{j}$. This operator acts in the following way

$$
\begin{aligned}
\left(H_{\omega} \varphi\right)(n) & =-\Delta \varphi+V_{\omega}(n) \varphi(n) \\
& =-\Delta \varphi+\omega_{n} \varphi(n)
\end{aligned}
$$

Since supp μ is compact, the potential V_{ω} is bounded. Moreover, V_{ω} is self-adjoint on $\ell^{2}\left(\mathbb{Z}^{d}\right)$.

Since $-\Delta$ and V_{ω} are self-adjoint, the operator $H_{\omega}=-\Delta+V_{\omega}$ is self-adjoint in $\ell^{2}\left(\mathbb{Z}^{d}\right)$.

Definition

The map $\Omega \ni \omega \mapsto H_{\omega} \in \mathcal{L}(\mathcal{H})$ is measurable if for any $\varphi, \psi \in \mathcal{H}$, the map $\Omega \ni \omega \mapsto\left\langle\varphi, H_{\omega} \Psi\right\rangle \in \mathbb{C}$ is measurable.

- The Anderson model $\omega \mapsto H_{\omega}$ on $\ell^{2}\left(\mathbb{Z}^{d}\right)$ is measurable.

Note that H_{ω} represents the family of operators $\left(H_{\omega}\right)_{\omega \in \Omega}$.

Definition

H_{ω} is called ergodic if there exists an ergodic group of transformations $\left(\tau_{\gamma}\right)_{\gamma \in \Gamma}$ acting on Ω associated to a family of unitary operators $\left(U_{\gamma}\right)_{\gamma \in \Gamma}$ on \mathcal{H} s.t.

$$
H_{\tau_{\gamma}(\omega)}=U_{\gamma} H_{\omega} U_{\gamma}^{*} \quad \text { for all } \gamma \in \Gamma .
$$

- The Anderson model H_{ω} on $\ell^{2}\left(\mathbb{Z}^{d}\right)$ is ergodic with respect to \mathbb{Z}^{d}. That is, with respect to the translations $\tau_{\gamma}(\omega)=\left(\omega_{n+\gamma}\right)_{n \in \mathbb{Z}^{d}}$ and $U_{\gamma} \varphi(n)=\varphi(n-\gamma)$ with $\gamma \in \mathbb{Z}^{d}$.

The Anderson model H_{ω} on $\ell^{2}(\mathbb{B})$ is ergodic w.r.t. a certain family of transformations in \mathbb{B} (see Acosta-Klein'92).

- The Anderson model H_{ω} on $\ell^{2}\left(\mathbb{Z}^{d}\right)$ is ergodic with respect to \mathbb{Z}^{d}. Indeed, recall the family $\left\{\tau_{\gamma}\right\}_{\gamma \in \mathbb{Z}^{d}}$ of translations on Ω given by

$$
\tau_{\gamma}(\omega)=\left(\omega_{n-\gamma}\right)_{n \in \mathbb{Z}^{d}}
$$

and the family of unitary operators U_{γ} acting on $\ell^{2}\left(\mathbb{Z}^{d}\right)$ defined by

$$
U_{\gamma} \varphi(n)=\varphi(n-\gamma), \quad \gamma \in \mathbb{Z}^{d}
$$

Note that U_{γ}^{*} is given by $U_{\gamma}^{*} \varphi(n)=\varphi(n+\gamma)=U_{-\gamma}$. Then

$$
\begin{aligned}
U_{\gamma} H_{\omega} U_{-\gamma} \varphi(n) & =U_{\gamma}(-\Delta) U_{-\gamma} \varphi(n)+U_{\gamma}\left(V_{\omega} U_{-\gamma}\right) \varphi(n) \\
& =-\Delta \varphi(n)+\left(V_{\omega} U_{-\gamma} \varphi\right)(n-\gamma) \\
& =-\Delta \varphi(n)+V_{\omega}(n-\gamma)\left(U_{-\gamma} \varphi\right)(n-\gamma) \\
& =-\Delta \varphi(n)+V_{\omega}(n-\gamma) \varphi(n) .
\end{aligned}
$$

Recall that V_{ω} acts in the following way : $V_{\omega} \varphi(n)=\omega_{n} \varphi(n)$, for all $n \in \mathbb{Z}^{d}$. Therefore $V_{\omega}(n-\gamma) \varphi(n)=\omega_{n-\gamma} \varphi(n)=V_{\tau_{\gamma}(\omega)} \varphi(n)$, and so

$$
U_{\gamma} H_{\omega} U_{-\gamma} \varphi=H_{\tau \gamma(\omega)}
$$

Spectrum

Theorem (Kunz-Souillard'80)

Let $H_{\omega}=-\Delta+V_{\omega}$ be the Anderson model on $\ell^{2}\left(\mathbb{Z}^{d}\right)$. Then

$$
(*) \quad \sigma\left(H_{\omega}\right)=\sigma(-\Delta)+\operatorname{supp} \mu \quad \text { a.s. }
$$

Remarks :
a) For the Anderson model H_{ω} on $\ell^{2}\left(\mathbb{Z}^{d}\right), \sigma(-\Delta)=[-2 d, 2 d]$.
b) For the Anderson model H_{ω} on $\ell^{2}(\mathbb{B}),(*)$ remains valid. In that case, $\sigma\left(-\Delta_{\mathbb{B}}\right)=[-2 \sqrt{K}, 2 \sqrt{K}]$, where K is the branching number of \mathbb{B}.
See S. Golénia's course

The following will be crucial in our proof.
W. Kirsch describes this result as "Whatever can happen, will happen, in fact, infinitely often".

Proposition

There exists Ω_{0} such that : for any $\omega \in \Omega_{0}$, any compact set $\Lambda \subset \mathbb{Z}^{d}$, any sequence $\left\{q_{i}\right\}_{i \in \Lambda}$ with $q_{i} \in \operatorname{supp} \mu$ and any $\varepsilon>0$, there exists a sequence $\left\{\gamma_{j}\right\}_{j \in \mathbb{Z}^{d}} \subset \mathbb{Z}^{d}$ with $\left\|\gamma_{j}\right\| \rightarrow \infty$ such that

$$
\sup _{n \in \Lambda}\left|V_{\omega}\left(n+\gamma_{j}\right)-q_{n}\right|<\varepsilon .
$$

Now we can prove the theorem
Theorem (Kunz-Souillard'80)
Let $H_{\omega}=-\Delta+V_{\omega}$ be the Anderson model on $\ell^{2}\left(\mathbb{Z}^{d}\right)$. Then

$$
\sigma\left(H_{\omega}\right)=\sigma(-\Delta)+\operatorname{supp} \mu \quad \text { a.s. }
$$

Proof :

- $\sigma\left(H_{\omega}\right) \subset \sigma(-\Delta)+\operatorname{supp} \mu$

One can show that $\sigma\left(V_{\omega}\right)=\operatorname{supp} \mu$ almost surely. One can also show that for a bounded operator B, and self-adjoint operator A,

$$
\sigma(A+B) \subset \sigma(A)+[-\|B\|,\|B\|]
$$

This, applied to V_{ω} and $-\Delta$ gives

$$
\sigma\left(H_{\omega}\right) \subset \operatorname{supp} \mu+[-2 \mathrm{~d}, 2 \mathrm{~d}]
$$

- $\sigma(-\Delta)+\operatorname{supp} \mu \subset \sigma\left(\mathrm{H}_{\omega}\right)$

We will use Weyl's criterion for the spectrum of the operator :

$$
E \in \sigma(H) \Longleftrightarrow \exists\left(\varphi_{n}\right) \subset \ell_{c}^{2}\left(\mathbb{Z}^{d}\right),\left\|\varphi_{n}\right\|=1 \text { s.t. }\left\|(H-E) \varphi_{n}\right\| \underset{n \rightarrow \infty}{\rightarrow 0}
$$

Let $E \in \sigma(-\Delta)+\operatorname{supp} \mu$, that is,

$$
E=E_{0}+E_{1} \text { with } E_{0} \in \sigma(-\Delta) \text { and } E_{1} \in \operatorname{supp} \mu
$$

There exists a Weyl sequence $\left(\varphi_{j}\right)$ for $-\Delta$ and E_{0} s.t. $\varphi_{j} \in \ell_{c}\left(\mathbb{Z}^{d}\right),\left\|\varphi_{j}\right\|=1$ and

$$
\left\|\left(-\Delta-E_{0}\right) \varphi_{j}\right\| \underset{j \rightarrow \infty}{\rightarrow 0}
$$

Then

$$
\begin{aligned}
\left\|\left(H_{\omega}-E\right) \varphi_{j}\right\| & =\left\|\left(-\Delta+V_{\omega}-\left(E_{0}+E_{1}\right)\right) \varphi_{j}\right\| \\
& \leq \underbrace{\left\|\left(-\Delta-E_{0}\right) \varphi_{j}\right\|}_{\rightarrow 0}+\left\|\left(V_{\omega}-E_{1}\right) \varphi_{j}\right\|
\end{aligned}
$$

Note that for a fixed $\omega,\left\|\left(V_{\omega}-E_{1}\right) \varphi_{j}\right\|$ is not necessarily small.
Fix j, φ_{j} and $\varepsilon:=1 / j$. Note that $E_{1} \in \operatorname{supp} \mu$, so we can apply the "whatever can happen will happen"-Proposition to

$$
\Lambda=\operatorname{supp} \varphi_{j}, \quad \text { and } \quad\left\{q_{i}\right\}_{i \in \Lambda}, q_{i}=E_{1}, \forall i \in \Lambda
$$

This says that for almost every $\omega \in \Omega$, there exists a sequence $\left\{\gamma_{k}^{(j)}\right\}_{k} \subset \mathbb{Z}^{d}$ with $\left\|\gamma_{k}^{(j)}\right\| \rightarrow \infty$ with k, such that

$$
\sup _{n \in \operatorname{supp} \varphi_{j}}\left|V_{\omega}\left(n+\gamma_{k}^{(j)}\right)-E_{1}\right|<\frac{1}{j}
$$

Since $\left\|\gamma_{k}^{(j)}\right\| \rightarrow \infty$ with k, for every φ_{j} we can pick a k_{j}, $\gamma_{k_{j}}^{(j)}$ such that the sequence $\left\{\varphi_{j}\left(\cdot-\gamma_{k_{j}}^{(j)}\right)\right\}_{j \in \mathbb{Z}^{d}}$ is orthogonal.
We define a new sequence $\tilde{\varphi}_{j}:=\varphi_{j}\left(\cdot-\gamma_{k_{j}}^{(j)}\right)$.

Note that for $\tilde{\varphi}_{j}:=\varphi_{j}\left(\cdot-\gamma_{k_{j}}^{(j)}\right)$ we have

$$
\begin{aligned}
\left\|\left(V_{\omega}-E_{1}\right) \tilde{\varphi}_{j}\right\|^{2} & =\sum_{n \in \operatorname{supp} \tilde{\varphi}_{j}}\left|\left(V_{\omega}(n)-E_{1}\right) \tilde{\varphi}_{j}(n)\right|^{2} \\
& =\sum_{n \in \operatorname{supp} \tilde{\varphi}_{j}}\left|\left(V_{\omega}(n)-E_{1}\right) \varphi_{j}\left(n-\gamma_{k_{j}}^{(j)}\right)\right|^{2}, \quad m=n-\gamma_{k_{j}}^{(j)} \\
& =\sum_{m \in \operatorname{supp} \varphi_{j}}\left|\left(V_{\omega}\left(m+\gamma_{k_{j}}^{(j)}\right)-E_{1}\right) \varphi_{j}(m)\right|^{2} \\
& \leq \sup _{m \in \operatorname{supp} \varphi_{j}}\left|\left(V_{\omega}\left(m+\gamma_{k_{j}}^{(j)}\right)-E_{1}\right)\right|^{2} \sum_{m \in \operatorname{supp} \varphi_{j}}\left|\varphi_{j}(m)\right|^{2} \\
& \leq 1 / j^{2}
\end{aligned}
$$

Therefore,

$$
\left\|\left(H_{\omega}-E\right) \tilde{\varphi}_{j}\right\| \leq\left\|\left(-\Delta-E_{0}\right) \tilde{\varphi}_{j}\right\|+\left\|\left(V_{\omega}-E_{1}\right) \tilde{\varphi}_{j}\right\| \underset{j \rightarrow \infty}{\rightarrow} 0 .
$$

That is, $\tilde{\varphi}_{j}$ is a Weyl sequence for H_{ω} and E, therefore $E \in \sigma\left(H_{\omega}\right)$.

Proof of Proposition "Whatever can happen will happen"

We will need the following fundamental tool :
Lemma (Borel-Cantelli)
Let $(\Omega, \mathcal{B}, \mathbb{P})$ be a probability space and $\left\{A_{n}\right\}_{n \in \mathbb{N}}$ be a sequence of measurable sets. Define

$$
\begin{aligned}
A_{\infty} & :=\left\{\omega \in \Omega: \omega \in A_{n} \text { for infinitely many } n\right\} \\
& =\bigcap_{N \in \mathbb{N}} \cup_{n \geq N} A_{n}
\end{aligned}
$$

1) If $\sum_{n} \mathbb{P}\left(A_{n}\right)<\infty$, then $\mathbb{P}\left(A_{\infty}\right)=0$.
2) If $A_{1}, A_{2}, \ldots A_{n}$.. are independent and $\sum_{n} \mathbb{P}\left(A_{n}\right)=\infty$, then $\mathbb{P}\left(A_{\infty}\right)=1$.

Proposition (Whatever can happen, will happen)

There exists Ω_{0} such that :
for any $\omega \in \Omega_{0}$, any compact set $\Lambda \subset \mathbb{Z}^{d}$, any sequence $\left\{q_{i}\right\}_{i \in \Lambda}$ with
$q_{i} \in \operatorname{supp} \mu$ and any $\varepsilon>0$,
there exists a sequence $\left\{\gamma_{j}\right\}_{j \in \mathbb{Z}^{d}} \subset \mathbb{Z}^{d}$ with $\left\|\gamma_{j}\right\| \rightarrow \infty$ such that

$$
\sup _{n \in \Lambda}\left|V_{\omega}\left(n+\gamma_{j}\right)-q_{n}\right|<\varepsilon .
$$

Proof : Fix a compact set $\Lambda \subset \mathbb{Z}^{d}$, a sequence $\left\{q_{i}\right\}_{i \in \Lambda}$ with $q_{i} \in \operatorname{supp} \mu$ and $\varepsilon>0$. Define

$$
A:=\left\{\omega \in \Omega: \sup _{n \in \Lambda}\left|V_{\omega}(n)-q_{n}\right|<\varepsilon\right\} .
$$

Since $q_{n} \in \operatorname{supp} \mu$,

$$
\mathbb{P}(A)>0
$$

Now take a sequence $\gamma_{j} \in \mathbb{Z}^{d}$ such that $\left\|\gamma_{m}-\gamma_{k}\right\|>\operatorname{diam}(\Lambda)$ for $m \neq k$ and define

$$
A_{j}:=\left\{\omega \in \Omega: \sup _{n \in \Lambda}\left|V_{\omega}\left(n+\gamma_{j}\right)-q_{n}\right|<\varepsilon\right\}
$$

Since the $V_{\omega}(n)$ are i.i.d., A_{j} are independent and

$$
\mathbb{P}\left(A_{j}\right)=\mathbb{P}(A)>0 \quad \forall j,
$$

therefore

$$
\sum_{j} \mathbb{P}\left(A_{j}\right)=\infty .
$$

$$
A_{j}:=\left\{\omega \in \Omega: \sup _{n \in \Lambda}\left|V_{\omega}\left(n+\gamma_{j}\right)-q_{n}\right|<\varepsilon\right\}, \quad \sum_{j} \mathbb{P}\left(A_{j}\right)=\infty .
$$

Then, we can use the Borel-Cantelli lemma, and deduce that for

$$
A_{\infty}\left(\Lambda,\left\{q_{i}\right\}, \varepsilon\right):=\left\{\omega \in \Omega: \omega \in A_{j} \text { for infinitely many } j\right\}
$$

we have

$$
\mathbb{P}\left(A_{\infty}\left(\Lambda,\left\{q_{i}\right\}, \varepsilon\right)\right)=1
$$

Now, we want to take all possible sets Λ. The space F of all finite subsets of \mathbb{Z}^{d} is countable, then

$$
\mathbb{P}\left(\cap_{\Lambda \in F} A_{\infty}\left(\Lambda,\left\{q_{i}\right\}, \varepsilon\right)\right)=1
$$

We also want to consider all possible sequences $\left\{q_{i}\right\}$ with $q_{i} \in \operatorname{supp} \mu$. We can extract a countable dense subset Q of $\operatorname{supp} \mu$ and get

$$
\mathbb{P}\left(\cap_{q_{i} \in Q \Lambda \in F}^{\cap} A_{\infty}\left(\Lambda,\left\{q_{i}\right\}, \varepsilon\right)\right)=1
$$

We also want to have the estimate to hold for $\varepsilon>0$ as small as we want. We can take $\varepsilon=1 / k$ with $k \in \mathbb{N}$, and define

$$
\Omega_{0}:=\bigcap_{k \in \mathbb{N}} \cap_{q_{i} \in Q \Lambda \in F}^{\cap} A_{\infty}\left(\Lambda,\left\{q_{i}\right\}, \frac{1}{k}\right)
$$

and get $\mathbb{P}\left(\Omega_{0}\right)=1$. This is the set Ω_{0} we were looking for.

Ergodic properties I

Recall that H_{ω} is ergodic if there exists an ergodic group of transformations $\left(\tau_{\gamma}\right)_{\gamma \in \Gamma}$ acting on Ω associated to a family of unitary operators $\left(U_{\gamma}\right)_{\gamma \in \Gamma}$ on \mathcal{H} s.t.

$$
H_{\tau_{\gamma}(\omega)}=U_{\gamma} H_{\omega} U_{\gamma}^{*} \quad \text { for all } \gamma \in \Gamma .
$$

As a consequence of egodicity, we have
Theorem (Pastur'80, Kunz-Souillard'80, Kirsch-Martinelli '82) If H_{ω} is an ergodic operator, there exist closed sets $\Sigma, \Sigma_{p p}, \Sigma_{a c}, \Sigma_{s c} \subset \mathbb{R}$ such that for \mathbb{P}-a.e. $\omega \in \Omega$

$$
\begin{aligned}
\Sigma & =\sigma\left(H_{\omega}\right) \\
\Sigma_{p p}=\sigma_{p p}\left(H_{\omega}\right), \Sigma_{a c} & =\sigma_{a c}\left(H_{\omega}\right), \Sigma_{s c}=\sigma_{s c}\left(H_{\omega}\right) .
\end{aligned}
$$

Ergodic properties II

Eigenvalue counting function : Let $\left\{\Lambda_{L}\right\}_{L \in \mathbb{N}}$ be a sequence of concentric cubes in \mathbb{Z}^{d}. Consider the restriction $H_{\omega} \upharpoonright_{\Lambda_{L}}:=\chi_{\Lambda_{L}} H_{\omega} \chi_{\Lambda_{L}}$. We define, for $E \in \mathbb{R}$,

$$
N_{L}^{\omega}(E):=\frac{1}{\operatorname{vol}\left(\Lambda_{L}\right)} \sharp\left\{\text { e.v. of } H_{\omega} \upharpoonright \Lambda_{L} \leq E\right\} \text {. }
$$

The Integrated Density of States (IDS) is defined as

$$
N(E):=\lim _{L \rightarrow \infty} N_{L}^{\omega}(E) .
$$

- For the Anderson model H_{ω} on $\ell^{2}\left(\mathbb{Z}^{d}\right)$,
* Existence : the limit exists for \mathbb{P}-a.e. $\omega \in \Omega$, and is deterministic.
* Almost-sure spectrum : for \mathbb{P}-a.e. $\omega \in \Omega$,

$$
\overline{\{E: E \text { is a growth point of } N\}}=\sigma\left(H_{\omega}\right)
$$

Ergodic properties II

Eigenvalue counting function : Let $\left\{\Lambda_{L}\right\}_{L \in \mathbb{N}}$ be a sequence of concentric cubes in \mathbb{Z}^{d}. Consider the restriction $H_{\omega} \upharpoonright_{\Lambda_{L}}=\chi_{\Lambda_{L}} H_{\omega} \chi_{\Lambda_{L}}$. We define, for $E \in \mathbb{R}$,

$$
N_{L}^{\omega}(E):=\frac{1}{\operatorname{vol}(\Lambda)} \sharp\left\{\text { e.v. of } H_{\omega} \upharpoonright_{\Lambda} \leq E\right\} .
$$

The Integrated Density of States (IDS) is defined as

$$
N(E):=\lim _{L \rightarrow \infty} N_{L}^{\omega}(E) .
$$

- For the Anderson model H_{ω} on $\ell^{2}(\mathbb{B})$,
* Existence : the limit exists for \mathbb{P}-a.e. $\omega \in \Omega$, and is deterministic (for a particular μ, see Acosta-Klein'92).
* Almost-sure spectrum : for \mathbb{P}-a.e. $\omega \in \Omega$,

$$
\overline{\{E: E \text { is a growth point of } N\}}=\sigma\left(H_{\omega}\right)
$$

Lifshitz tails

Let $E_{0}=\inf \sigma\left(-\Delta+V_{0}\right)$, with V_{0} periodic. The Integrated Density of States (IDS) for $H=-\Delta+V_{0}$ behaves as

$$
N(E) \sim\left(E-E_{0}\right)^{d / 2}, \quad E \searrow E_{0} .
$$

On the other hand, the IDS for the Anderson model $H_{\omega}=-\Delta+V_{\omega}$, behaves near $E_{0}=\inf \Sigma$ as

$$
N(E) \sim e^{-\left(E-E_{0}\right)^{-d / 2}} \quad E \searrow E_{0} \quad \text { Lifshitz tails }
$$

(see H. Najar's talk last Friday)

- For the Anderson model H_{ω} on $\ell^{2}\left(\mathbb{Z}^{d}\right)$,
* The IDS decays exponentially near the bottom of the spectrum \Rightarrow localization.
- For the Anderson model H_{ω} on $\ell^{2}(\mathbb{B})$,
* The IDS decays exponentially near the bottom of the spectrum \nRightarrow localization (see Hocker-Escuti - Schumacher'14).

Summary

We saw that the Anderson model H_{ω} in $\ell^{2}\left(\mathbb{Z}^{d}\right)$ is ergodic. That is, there exists an ergodic group of transformations $\left(\tau_{\gamma}\right)_{\gamma \in \Gamma}$ acting on Ω associated to a family of unitary operators $\left(U_{\gamma}\right)_{\gamma \in \Gamma}$ on \mathcal{H} s.t.

$$
H_{\tau_{\gamma}(\omega)}=U_{\gamma} H_{\omega} U_{\gamma}^{*} \quad \text { for all } \gamma \in \Gamma .
$$

- ergodicity \Rightarrow the spectrum of H_{ω} is deterministic. That is, there exists $\Sigma \subset \mathbb{R}$, such that

$$
\sigma\left(H_{\omega}\right)=\Sigma \text { for } \mathbb{P} \text {-a.e. } \omega \in \Omega .
$$

- ergodicity \Rightarrow the $\mathrm{pp} / \mathrm{sc} / \mathrm{ac}$ spectrum of H_{ω} is deterministic.
- For H_{ω} in $\ell^{2}\left(\mathbb{Z}^{d}\right)$, we can compute the exact set in \mathbb{R} which corresponds to the deterministic spectrum.
- ergodicity \Rightarrow existence of Integrated Density of States. Moreover, this function does not depend on $\omega \in \Omega$.
- The IDS gives another way to prove that the spectrum is deterministic.
- In some cases, the IDS gives also information on the localization region!

Reference

- W. Kirsch, An invitation to Random Schrödinger Operators, in Random Schrödinger Operators, Panoramas et Syntheses Vol. 25, 2008 (SMF).

The Anderson model

Results on localization and spectral type

$$
\text { Let } H_{\omega, \lambda}=-\Delta+\lambda V_{\omega}, \quad \lambda \in(0, \infty) \text {. }
$$

Now that we know that $H_{\omega, \lambda}$ has a deterministic spectrum, and the spectral types pp, sc, ac are also deterministic, we can ask :

For which energies in $\sigma\left(H_{\omega, \lambda}\right)$ and strength of the disorder λ do we have localization, and for which energies and values of λ do we have delocalization?

For the Anderson model on $\ell^{2}\left(\mathbb{Z}^{d}\right)$ there is a very good understanding of the region of localization (and in particular, the pure point part) in spectral band edges or at high disorder :

$$
\sigma\left(H_{\omega, \lambda}\right)=\sigma_{p p}\left(H_{\omega, \lambda}\right) \cup \sigma_{c}\left(H_{\omega, \lambda}\right) .
$$

Unfortunately, the delocalization problem is still open. However, for the Anderson model on $\ell^{2}(\mathbb{B})$ there is more information on delocalization.

Between the regions of localization and delocalization, there is a transition :

- spectral : transition between pp spectrum and ac spectrum.
- dynamical : transition between localization (absence of quantum transport) and delocalization (non-null quantum transport). Also called metal-insulator transport transition or Anderson transition.

Absence of quantum transport in the material represented by $H_{\omega, \lambda}$ is described as : for any $\varphi \in \ell_{c}\left(\mathbb{Z}^{d}\right)$,

$$
\sup _{t}\left\||X|^{p} e^{-i t H_{\omega, \lambda}} \chi_{I}\left(H_{\omega, \lambda}\right) \varphi\right\|<\infty
$$

for all $p \geq 0$ and for \mathbb{P}-a.e. $\omega \in \Omega$.
Recall that

$$
(D L) \Rightarrow \text { absence of transport } \Rightarrow \text { pp spectrum. }
$$

Presence of quantum transport

$$
\left\||X|^{p} e^{-i t H_{\omega, \lambda}} \chi_{l}\left(H_{\omega, \lambda}\right) \varphi\right\| \rightarrow \infty \text { as } t \rightarrow \infty
$$

Phase diagram for $H_{\omega, \lambda}$ on $\ell^{2}\left(\mathbb{Z}^{d}\right)$, with $d \geq 2$

Transport (Anderson) transition : passage from localized to extended states.

Phase diagram for $H_{\omega, \lambda}$ on $\ell^{2}(\mathbb{B})$

\mathbb{B} : Bethe lattice with branching number $K+1$.
Transport (Anderson) transition : passage from localized to extended states.

How to prove localization?

- Show the decay of the resolvent

$$
G_{\omega, \lambda}(x, y ; E+i \varepsilon):=\left\langle\delta_{x},\left(H_{\omega, \lambda}-(E+i \varepsilon)\right)^{-1} \delta_{y}\right\rangle
$$

when $\varepsilon \rightarrow 0$, for $E \in I$, for some open subset $I \subset \sigma\left(H_{\omega}\right)$, and $x, y \in \mathbb{Z}^{d}$.
This usually holds for I contained in the spectral edges.

- Use this decay to obtain

$$
(D L) \quad \mathbb{E}\left(\sup _{t \in \mathbb{R}}\left|\left\langle\delta_{x}, e^{-i t H_{\omega, \lambda}} \chi_{\prime}\left(H_{\omega, \lambda}\right) \delta_{y}\right\rangle\right|\right) \leq C e^{-c|x-y|}
$$

For example, one can use that, for $s \in(0,1)$ there exists C_{s} such that
$\mathbb{E}\left(\sup _{f \in \mathcal{C}(\mathbb{R}),|f| \leq 1}\left|\left\langle\delta_{x}, f(H) \chi_{\prime}(H) \delta_{y}\right\rangle\right|\right) \leq C_{s} \liminf _{|\varepsilon| \rightarrow 0} \int_{I} \mathbb{E}\left(\left|G_{\omega, \lambda}(x, y ; E+i \varepsilon)\right|^{s}\right) d E$.

There are other ways to link the resolvent to the spectrum.
For example, the Simon-Wolff Criterion : Let $H_{\omega}=-\Delta+V_{\omega}$ on $\ell^{2}\left(\mathbb{Z}^{d}\right)$, such that the probability distribution of the random variables, μ, is absolutely continuous. Then, if for Lebesgue-a.e. $E \in I$ and \mathbb{P}-a.e. ω

$$
\lim _{\varepsilon \rightarrow 0} \sum_{y \in \mathbb{Z}^{d}}\left|\left\langle\delta_{y},\left(H_{\omega}-(E+i \varepsilon)\right)^{-1} \delta_{x}\right\rangle\right|^{2}<\infty
$$

then the spectral measure associated with δ_{x} is pure point in I for \mathbb{P}-a.e. ω.

For more examples, see S. Golénia's course.

1 Note that the resolvent $\left(H_{\omega, \lambda}-E\right)^{-1}$ is not defined for $E \in \sigma\left(H_{\omega, \lambda}\right)$! The methods to prove localization need to deal with this problem.

Non-exhaustive list of results

Results on localization for the Anderson model on $\ell^{2}\left(\mathbb{Z}^{d}\right)$ or $L^{2}\left(\mathbb{R}^{d}\right)$

- $d=1$: localization in the whole spectrum. Golsheid-Molchanov-Pastur '77, Kotani '82, Carmona '82, Simon '84, Damanik-Sims-Stolz '01 (Bernoulli).

1t is conjectured that in $d=2$ there is localization in the whole spectrum. So far, the methods only give localization at the edges of the spectrum. This is an open problem!

Results on localization for the Anderson model on $\ell^{2}\left(\mathbb{Z}^{d}\right)$ or $L^{2}\left(\mathbb{R}^{d}\right)$

- $d \geq 2$: localization at the edges of the spectrum.
- Multiscale Analysis (MSA) (Weak version) Prove that for some interval $I \subset \mathbb{R}$ the following holds : for some $\alpha>1, p>2 d$ and $\gamma>0$ and for all $E \in I \subset \mathbb{R}$, there is a sequence of cubes $\Lambda_{L_{k}}, L_{k+1}=L_{k}^{\alpha}, L_{k} \nearrow \mathbb{Z}^{d}$,

$$
\mathbb{P}\left(\left|\left\langle\delta_{x},\left(H_{\omega, \lambda} \mid \Lambda_{L_{k}}-E\right)^{-1} \delta_{y}\right\rangle\right| \leq e^{-\gamma L_{k}}\right) \geq 1-\frac{1}{L_{k}^{p}} .
$$

Fröhlich-Spencer '83, von Dreifus-Klein '89, Combes-Hislop '94, Germinet-De Bièvre '98, Damanik-Stollmann '01, Germinet-Klein '01-'11, Bourgain-Kenig '06 (Bernoulli).

1t is conjectured that in $d \geq 3$ there is a metal-insulator transition. This is an open problem!

Results on localization for the Anderson model on $\ell^{2}\left(\mathbb{Z}^{d}\right)$ or $L^{2}\left(\mathbb{R}^{d}\right)$

- $d \geq 2$: localization at the edges of the spectrum.
- Fractional Moment Method (FMM)

Prove that for $I \subset \mathbb{R}$, the following holds : there exists $s \in(0,1)$ and $0<c, C<\infty$ such that

$$
\mathbb{E}\left(\left|\left\langle\delta_{x},\left(H_{\omega, \lambda}-(E+i \varepsilon)\right)^{-1} \delta_{y}\right\rangle\right|^{s}\right) \leq C e^{-c\|x-y\|}
$$

uniformly in $E \in I, \varepsilon>0$ and $x, y \in \mathbb{Z}^{d}$.
Aizenman-Molchanov '93, Aizenman'96, Graf, Aizenman-Elgart-Hundertmark-Schenker '01, Aizenman-Elgart-Naboko-Schenker-Stolz '03.

1 It is conjectured that in $d \geq 3$ there is a metal-insulator transition. This is an open problem!

Results for the Anderson model on graphs (ex. $\ell^{2}(\mathbb{B})$)

- Localization

Aizenman-Molchanov '93, Aizenman'94, Tautenhahn'11.
Exner-Helm-Stollmann'08, Schubert'14, Hislop-Post'08

- Delocalization and ac spectrum, $\ell^{2}(\mathbb{B})$

Klein '96- '98, Aizenman-Sims-Warzel'06, Froese-Hasler-Spitzer'06,'07, Halasan'09, Aizenman-Warzel'06-'16.

- Integrated Density of States.

Acosta-Klein'92, Hoecker-Escuti-Schumacher'12 (B), Antunović-Veselić'08

Results for the Anderson model on quantum graphs :
Klopp-Pankrashkin'08,'09, Aizenman-Sims-Warzel'06, Sabri'12.
Percolation graphs : Kirsch-Müller'06, Müller-Stollmann'.
For more results, see works by the "Chemnitz school" :
P. Stollmann, I. Veselić, D. Lenz, and M. Keller, M. Tautenhahn, C. Schubert, C. Schumacher, etc.

Fractional Moment Method

Proof of localization at high disorder

Reference:
We follow closely Section 4 in G. Stolz's notes An introduction to the mathematics of Anderson localization, Contemporary Mathematics 551, 2010.

Recall that

- H_{ω} exhibits dynamical localization (DL) in I if there exist constants $C<\infty$ and $c>0$ such that for all $x, y \in \mathbb{Z}^{d}$,

$$
(D L) \quad \mathbb{E}\left(\sup _{t \in \mathbb{R}}\left|\left\langle\delta_{y}, e^{-i t H_{\omega}} \chi_{l}\left(H_{\omega}\right) \delta_{x}\right\rangle\right|\right) \leq C e^{-c|x-y|}
$$

Previously, we saw that $D L \Rightarrow A L \Rightarrow$ pp spectrum, and
$D L \Rightarrow$ absence of transport.
Absence of transport : for any $\varphi \in \ell_{c}\left(\mathbb{Z}^{d}\right)$,

$$
\sup _{t}\left\||X|^{p} e^{-i t H_{\omega}} \chi_{l}\left(H_{\omega}\right) \varphi\right\|<\infty
$$

for all $p \geq 0$ and for \mathbb{P}-a.e. $\omega \in \Omega$.
Goal : to prove (DL) for $H_{\omega}=-\Delta+\lambda V_{\omega}$, for large λ.

Goal : to prove (DL) for $H_{\omega}=-\Delta+\lambda V_{\omega}$, for large λ.
Theorem
Let $I \subset \mathbb{R}$ be a bounded open interval. If there exists $s \in(0,1), 0<c, C<\infty$ such that

$$
(*) \quad \mathbb{E}\left(\left|\left\langle\delta_{x},\left(H_{\omega, \lambda}-(E+i \varepsilon)\right)^{-1} \delta_{y}\right\rangle\right|^{s}\right) \leq C e^{-c\|x-y\|}
$$

uniformly in $E \in I, \varepsilon>0$ and $x, y \in \mathbb{Z}^{d}$. Then $H_{\omega, \lambda}$ exhibits dynamical localization in I.

Therefore, our goal becomes
Goal : to prove (*) for $H_{\omega}=-\Delta+\lambda V_{\omega}$, for large λ.

In the rest of this lecture, we will focus in showing
Theorem
Let $s \in(0,1)$. Then there exists $\lambda_{0}>0$ such that for $\lambda \geq \lambda_{0}$, there are constants $0<c, C<\infty$ such that

$$
(*) \quad \mathbb{E}\left(\left|\left\langle\delta_{x},\left(H_{\omega, \lambda}-z\right)^{-1} \delta_{y}\right\rangle\right|^{s}\right) \leq C e^{-c\|x-y\|}
$$

uniformly in $x, y \in \mathbb{Z}^{d}$ and $z \in \mathbb{C} \backslash \mathbb{R}$.

We assume the random variables ω_{n} have an absolutely continuous probability distribution, with a continuous density, i.e., there exists $\rho \in \mathcal{C}(\mathbb{R})$ s.t.

$$
d \mu(x)=\rho(x) d x
$$

The proof relies on two results :

- An a priori bound on the fractional moment of the resolvent :

$$
\mathbb{E}\left(\left|\left\langle\delta_{x},\left(H_{\omega, \lambda}-z\right)^{-1} \delta_{y}\right\rangle\right|^{s}\right) \leq C(s, \lambda, \rho)
$$

- A decoupling lemma : for ρ there exists a constant $C<\infty$ s.t., uniformly in α and $\beta \in \mathbb{C}$,

$$
\int \frac{1}{|v-\beta|^{s}} \rho(v) d v \leq C \int \frac{|v-\alpha|^{s}}{|v-\beta|^{s}} \rho(v) d v
$$

The a priori bound

Since the random variables ω_{n} have a probability density ρ, compactly supported and bounded, we can write

$$
\mathbb{E}(\cdot):=\int_{\Omega}(\cdot) d \mathbb{P}=\int_{\mathbb{A}} \ldots \int_{\mathbb{A}}(\cdot) \ldots g\left(\omega_{n}\right) d \omega_{n} \ldots
$$

Lemma (A priori bound)
There exists a constant $C=(s, \rho)<\infty$ such that

$$
\mathbb{E}\left(\left|\left\langle\delta_{x},\left(H_{\omega, \lambda}-z\right)^{-1} \delta_{y}\right\rangle\right|^{s}\right) \leq \frac{C(s, \rho)}{\lambda^{s}},
$$

for all $x, y \in \mathbb{Z}^{d}$ and $\lambda>0$.
Proof : we will start by showing that

$$
\mathbb{E}_{x, y}\left(\left|\left\langle\delta_{x},\left(H_{\omega, \lambda}-z\right)^{-1} \delta_{y}\right\rangle\right|^{s}\right) \leq \frac{C(s, \rho)}{\lambda^{s}} .
$$

We will use the conditional expectation with $\left(\omega_{n}\right)_{n \neq x, y}$ fixed.

$$
\mathbb{E}_{x, y}(\cdot)=\int_{\mathbb{A}} \int_{\mathbb{A}}(\cdot) \rho\left(\omega_{x}\right) \rho\left(\omega_{y}\right) d \omega_{x} d \omega_{y}
$$

Note that if we are able to show

$$
\mathbb{E}_{x, y}\left(\left|\left\langle\delta_{x},\left(H_{\omega, \lambda}-z\right)^{-1} \delta_{y}\right\rangle\right|^{s}\right) \leq \frac{C(s, \rho)}{\lambda^{s}}
$$

the r.h.s does not depend on $\left(\omega_{n}\right)_{n \notin\{x, y\}}$ anymore. We can then take the \mathbb{E} with respect to the rest of the r.v. and obtain

$$
\mathbb{E}\left(\left|\left\langle\delta_{x},\left(H_{\omega, \lambda}-z\right)^{-1} \delta_{y}\right\rangle\right|^{s}\right) \leq \frac{C(s, \rho)}{\lambda^{s}}
$$

which is the desired result.

Proof of the a priori bound

Goal : to obtain an upper bound for

$$
\mathbb{E}_{x, y}\left(\left|\left\langle\delta_{x},\left(H_{\omega, \lambda}-z\right)^{-1} \delta_{y}\right\rangle\right|^{s}\right), x, y \in \mathbb{Z}^{d}
$$

We split the proof in two cases : i) when $x=y$ and ii) when $x \neq y$.
i) Case $x=y$ (rank-one perturbation)

Recall that

$$
H_{\omega, \lambda}=-\Delta+\sum_{n \in \mathbb{Z}^{d}} \omega_{n} P_{n}, \quad P_{n}:=\left\langle\delta_{n}, \cdot\right\rangle \delta_{n}
$$

Write $\omega=\left(\hat{\omega}, \omega_{x}\right)$, where $\hat{\omega}=\left(\omega_{n}\right)_{n \neq x}$. Then

$$
H_{\omega, \lambda}=H_{\hat{\omega}, \lambda}+\lambda \omega_{x} P_{x}
$$

Using the resolvent identity, we get

$$
\left(H_{\omega, \lambda}-z\right)^{-1}=\left(H_{\hat{\omega}, \lambda}-z\right)^{-1}-\lambda \omega_{x}\left(H_{\hat{\omega}, \lambda}-z\right)^{-1} P_{x}\left(H_{\omega, \lambda}-z\right)^{-1}
$$

$$
\left(H_{\omega, \lambda}-z\right)^{-1}=\left(H_{\hat{\omega}, \lambda}-z\right)^{-1}-\lambda \omega_{x}\left(H_{\hat{\omega}, \lambda}-z\right)^{-1} P_{x}\left(H_{\omega, \lambda}-z\right)^{-1}
$$

Now we take matrix-elements i.e. compute $\left\langle\delta_{x}, \cdot\right\rangle$ in both sides :

$$
\begin{aligned}
\left\langle\delta_{x},\left(H_{\omega, \lambda}-z\right)^{-1} \delta_{x}\right\rangle & =\left\langle\delta_{x},\left(H_{\hat{\omega}, \lambda}-z\right)^{-1} \delta_{x}\right\rangle \\
& -\lambda \omega_{x}\left\langle\delta_{x},\left(H_{\hat{\omega}, \lambda}-z\right)^{-1} \delta_{x}\right\rangle\left\langle\delta_{x},\left(H_{\omega, \lambda}-z\right)^{-1} \delta_{x}\right\rangle
\end{aligned}
$$

In abbreviated form :

$$
G_{\omega, \lambda}(x, x ; z)=G_{\hat{\omega}, \lambda}(x, x ; z)-\lambda \omega_{x} G_{\hat{\omega}, \lambda}(x, x ; z) G_{\omega, \lambda}(x, x ; z)
$$

If we write $\alpha=\alpha(\hat{\omega}, x, z):=\left(G_{\hat{\omega}, \lambda}(x, x ; z)\right)^{-1}$, then

$$
G_{\omega, \lambda}(x, x ; z)=\frac{1}{\alpha+\lambda \omega_{x}}
$$

Here, α is well-defined, because $\frac{\operatorname{Im} G_{\hat{\omega}, \lambda}(x, x ; z)}{\operatorname{Im} z}>0$.

$$
G_{\omega, \lambda}(x, x ; z)=\frac{1}{\alpha+\lambda \omega_{x}}
$$

where $\alpha \in \mathbb{C}$ and does not depend on ω_{x} !
Suppose supp $\rho \subset[-M, M]$. Then

$$
\begin{aligned}
\mathbb{E}_{x}\left(\left|G_{\omega, \lambda}(x, x ; z)\right|^{s}\right) & =\int_{-M}^{M} \frac{1}{\left|\alpha+\lambda \omega_{x}\right|^{s}} \rho\left(\omega_{x}\right) d \omega_{x} \\
& \leq \frac{\|\rho\|_{\infty}}{\lambda^{s}} \int_{-M}^{M} \frac{1}{\left|\alpha \lambda^{-1}+\omega_{x}\right|^{s}} d \omega_{x}
\end{aligned}
$$

The r.h.s is integrable, independent of α and λ. Therefore,

$$
\mathbb{E}_{x}\left(\left|G_{\omega, \lambda}(x, x ; z)\right|^{s}\right) \leq \frac{C(\rho, s)}{\lambda^{s}}
$$

which is the desired bound for $x=y$.
ii) Case $x \neq y$ (rank-two perturbation)

Recall that

$$
H_{\omega, \lambda}=-\Delta+\sum_{n \in \mathbb{Z}^{d}} \omega_{n} P_{n}, \quad P_{n}:=\left\langle\delta_{n}, \cdot\right\rangle \delta_{n} .
$$

Write $\omega=\left(\hat{\omega}, \omega_{x}, \omega_{y}\right)$, with $\hat{\omega}=\left(\omega_{n}\right)_{n \notin\{x, y\}}$, then

$$
H_{\omega, \lambda}=H_{\hat{\omega}, \lambda}+\lambda \omega_{x} P_{x}+\lambda \omega_{y} P_{y}
$$

Writing $P=P_{x}+P_{y}$ and using the resolvent identity, we get

$$
\left(H_{\omega, \lambda}-z\right)^{-1}=\left(H_{\hat{\omega}, \lambda}-z\right)^{-1}-\left(H_{\omega, \lambda}-z\right)^{-1}\left(\lambda \omega_{x} P_{x}+\lambda \omega_{y} P_{y}\right)\left(H_{\hat{\omega}, \lambda}-z\right)^{-1}
$$

Now, we want to determine the matrix-elements (omit z for convenience)

$$
\left(\begin{array}{ll}
G_{\omega, \lambda}(x, x) & G_{\omega, \lambda}(x, y) \\
G_{\omega, \lambda}(y, x) & G_{\omega, \lambda}(y, y)
\end{array}\right)
$$

in terms of

$$
\left(\begin{array}{ll}
G_{\hat{\omega}, \lambda}(x, x) & G_{\hat{\omega}, \lambda}(x, y) \\
G_{\hat{\omega}, \lambda}(y, x) & G_{\hat{\omega}, \lambda}(y, y)
\end{array}\right)
$$

Using

$$
\left(H_{\omega, \lambda}-z\right)^{-1}=\left(H_{\hat{\omega}, \lambda}-z\right)^{-1}-\left(H_{\omega, \lambda}-z\right)^{-1}\left(\lambda \omega_{x} P_{x}+\lambda \omega_{y} P_{y}\right)\left(H_{\hat{\omega}, \lambda}-z\right)^{-1} .
$$

we can compute each matrix element, for ex.
$G_{\omega, \lambda}(x, x)=G_{\hat{\omega}, \lambda}(x, x)-\lambda \omega_{x} G_{\omega, \lambda}(x, x) G_{\hat{\omega}, \lambda}(x, x)-\lambda \omega_{y} G_{\omega, \lambda}(x, y) G_{\hat{\omega}, \lambda}(y, x)$.
After some computations... we get

$$
\begin{aligned}
& \left(\begin{array}{ll}
G_{\omega, \lambda}(x, x) & G_{\omega, \lambda}(x, y) \\
G_{\omega, \lambda}(y, x) & G_{\omega, \lambda}(y, y)
\end{array}\right)=\left[\left(\begin{array}{cc}
G_{\hat{\omega}, \lambda}(x, x) & G_{\hat{\omega}, \lambda}(x, y) \\
G_{\hat{\omega}, \lambda}(y, x) & G_{\hat{\omega}, \lambda}(y, y)
\end{array}\right)+\lambda\left(\begin{array}{cc}
\omega_{x} & 0 \\
0 & \omega_{y}
\end{array}\right)\right]^{-1} \\
& =:\left[G_{\hat{\omega}}+\lambda\left(\begin{array}{cc}
\omega_{x} & 0 \\
0 & \omega_{y}
\end{array}\right)\right]^{-1}
\end{aligned}
$$

Since $G_{\omega, \lambda}(x, y ; z)$ is one element of the matrix, we can bound it by the norm of the matrix

$$
\mathbb{E}\left(\left|G_{\omega, \lambda}(x, y ; z)\right|^{s}\right) \leq \mathbb{E}_{x, y}\left(\left\|\left[G_{\hat{\omega}}+\lambda\left(\begin{array}{cc}
\omega_{x} & 0 \\
0 & \omega_{y}
\end{array}\right)\right]^{-1}\right\|^{s}\right)
$$

$$
\begin{aligned}
\mathbb{E}\left(\left|G_{\omega, \lambda}(x, y ; z)\right|^{s}\right) & \leq \frac{1}{\lambda^{s}} \mathbb{E}_{x, y}\left(\left\|\left[\frac{1}{\lambda} G_{\hat{\omega}}+\left(\begin{array}{cc}
\omega_{x} & 0 \\
0 & \omega_{y}
\end{array}\right)\right]^{-1}\right\|^{s}\right) \\
& =\frac{1}{\lambda^{s}} \iint\left\|\left[\frac{1}{\lambda} G_{\hat{\omega}}+\left(\begin{array}{cc}
\omega_{x} & 0 \\
0 & \omega_{y}
\end{array}\right)\right]^{-1}\right\|^{s} \rho\left(\omega_{x}\right) \rho\left(\omega_{y}\right) d \omega_{x} d \omega_{y} \\
& \leq \frac{\|\rho\|_{\infty}^{2}}{\lambda^{s}} \int_{-M}^{M} \int_{-M}^{M}\left\|\left[\frac{1}{\lambda} G_{\hat{\omega}}+\left(\begin{array}{cc}
\omega_{x} & 0 \\
0 & \omega_{y}
\end{array}\right)\right]^{-1}\right\|^{s} d \omega_{x} d \omega_{y}
\end{aligned}
$$

Now, we would like to decouple the matrix with elements ω_{x}, ω_{y}, and isolate each term. For this, we do a change of variables

$$
u=\frac{\omega_{x}+\omega_{y}}{2}, \quad v=\frac{\omega_{x}-\omega_{y}}{2}
$$

and get
$\mathbb{E}\left(\left|G_{\omega, \lambda}(x, y ; z)\right|^{s}\right) \leq \frac{2\|\rho\|_{\infty}^{2}}{\lambda^{s}} \int_{-M}^{M} \int_{-M}^{M}\left\|\left[\frac{1}{\lambda} G_{\hat{\omega}}+\left(\begin{array}{cc}-v & 0 \\ 0 & v\end{array}\right)+u \mathbb{I}_{2 \times 2}\right]^{-1}\right\|^{s} d u d v$
$\mathbb{E}\left(\left|G_{\omega, \lambda}(x, y ; z)\right|^{s}\right) \leq \frac{2\|\rho\|_{\infty}^{2}}{\lambda^{s}} \int_{-M}^{M} \int_{-M}^{M}\left\|\left[\frac{1}{\lambda} G_{\hat{\omega}}+\left(\begin{array}{cc}-v & 0 \\ 0 & v\end{array}\right)+u \mathbb{I}_{2 \times 2}\right]^{-1}\right\|^{s} d u d v$
Note that the matrix

$$
\frac{1}{\lambda} G_{\hat{\omega}}+\left(\begin{array}{cc}
-v & 0 \\
0 & v
\end{array}\right)
$$

has either positive or negative imaginary part.
Therefore we can use the following result :
Lemma : For all 2×2 matrices A such that either $\operatorname{Im} A \geq 0$ or $\operatorname{Im} A \leq 0$, one has

$$
\int_{-M}^{M}\left\|(A+u \mathbb{I})^{-1}\right\|^{s} d u \leq C(M, s) .
$$

For a proof, see G. Stolz's notes.
We obtain

$$
\mathbb{E}\left(\left|G_{\omega, \lambda}(x, y ; z)\right|^{s}\right) \leq 4 M\|\rho\|_{\infty}^{2} C(M, s) \frac{1}{\lambda^{s}}
$$

Remarks

In the last proof we obtained the following

$$
\left(\begin{array}{ll}
G_{\omega, \lambda}(x, x) & G_{\omega, \lambda}(x, y) \\
G_{\omega, \lambda}(y, x) & G_{\omega, \lambda}(y, y)
\end{array}\right)=\left[\left(\begin{array}{cc}
G_{\hat{\omega}, \lambda}(x, x) & G_{\hat{\omega}, \lambda}(x, y) \\
G_{\hat{\omega}, \lambda}(y, x) & G_{\hat{\omega}, \lambda}(y, y)
\end{array}\right)+\lambda\left(\begin{array}{cc}
\omega_{x} & 0 \\
0 & \omega_{y}
\end{array}\right)\right]^{-1}
$$

This is a special case of a more general result, called the Krein formula.

Theorem (Krein formula)
Let H be a self-adjoint operator on some Hilbert space \mathcal{H}. If

$$
H=H_{0}+W
$$

with W a finite rank operator satisfying

$$
W=P W P
$$

for some finite-dimensional orthogonal projection P, then, for z with $\operatorname{Im} z \neq 0$, we have

$$
\left[P(H-z)^{-1} P\right]=\left[W+\left[P\left(H_{0}-z\right)^{-1} P\right]^{-1}\right]^{-1}
$$

where the inverse is taken on the restriction to the range of P.

Let us recall that we want to prove the following
Theorem
Let $s \in(0,1)$. Then there exists $\lambda_{0}>0$ such that for $\lambda \geq \lambda_{0}$, there are constants $0<c, C<\infty$ such that

$$
(*) \quad \mathbb{E}\left(\left|\left\langle\delta_{x},\left(H_{\omega, \lambda}-z\right)^{-1} \delta_{y}\right\rangle\right|^{s}\right) \leq C e^{-c\|x-y\|}
$$

uniformly in $x, y \in \mathbb{Z}^{d}$ and $z \in \mathbb{C} \backslash \mathbb{R}$.
Ingredients of the proof:

- The a priori bound on the fractional moment of the resolvent :

$$
\mathbb{E}\left(\left|\left\langle\delta_{x},\left(H_{\omega, \lambda}-z\right)^{-1} \delta_{y}\right\rangle\right|^{s}\right) \leq C(s, \lambda, \rho)
$$

- A decoupling lemma : for ρ there exists a constant $C^{\prime}<\infty$ s.t., uniformly in α and $\beta \in \mathbb{C}$,

$$
\int \frac{1}{|v-\beta|^{s}} \rho(v) d v \leq C \int \frac{|v-\alpha|^{s}}{|v-\beta|^{s}} \rho(v) d v
$$

Proof of Theorem

Suppose $x \neq y$. Then $\left\langle\delta_{x}, \delta_{y}\right\rangle=0$ and

$$
\begin{aligned}
\left\langle\delta_{x}, \delta_{y}\right\rangle & =\left\langle\delta_{x},\left(H_{\omega, \lambda}-z\right)^{-1}\left(H_{\omega, \lambda}-z\right) \delta_{y}\right\rangle \\
& =\left\langle\delta_{x},\left(H_{\omega, \lambda}-z\right)^{-1}\left(-\Delta \delta_{y}-\left(V_{\omega}-z\right) \delta_{y}\right)\right\rangle \\
& =\left\langle\delta_{x},\left(H_{\omega, \lambda}-z\right)^{-1}\left(-\sum_{u \sim y} \delta_{u}-\left(\lambda \omega_{y}-z\right) \delta_{y}\right)\right\rangle \\
& =\left\langle\delta_{x},\left(H_{\omega, \lambda}-z\right)^{-1}\left(-\sum_{u \sim y} \delta_{u}\right)\right\rangle+\left(\lambda \omega_{y}-z\right)\left\langle\delta_{x},\left(H_{\omega, \lambda}-z\right)^{-1} \delta_{y}\right\rangle \\
& =-\sum_{u \sim y} G_{\omega, \lambda}(x, u ; z)+\left(\lambda \omega_{y}-z\right) G_{\omega, \lambda}(x, y ; z) .
\end{aligned}
$$

One can compute that

$$
G_{\omega, \lambda}(x, y ; z)=\frac{a}{\lambda \omega_{y}-b},
$$

where a and b do not depend on ω_{y}.

$$
\begin{aligned}
\mathbb{E}\left(\left|G_{\omega, \lambda}(x, y ; z)\right|^{s}\right) & =\frac{1}{\lambda^{s}} \mathbb{E}\left(\frac{|a|^{s}}{\left|\omega_{y}-\frac{b}{\lambda}\right|^{s}}\right) \\
& \leq \frac{C^{\prime}}{\lambda^{s}} \mathbb{E}\left(\frac{\left|\omega_{y}-\frac{z}{\lambda}\right|^{s}|a|^{s}}{\left|\omega_{y}-\frac{b}{\lambda}\right|^{s}}\right) \quad \text { decoupling lemma } \\
& =\frac{C^{\prime}}{\lambda^{s}} \mathbb{E}\left(\left|\lambda \omega_{y}-z\right|^{s}\left|G_{\omega, \lambda}(x, y ; z)\right|^{s}\right)
\end{aligned}
$$

where we used that

$$
G_{\omega, \lambda}(x, y ; z)=\frac{a}{\lambda \omega_{y}-b}
$$

Recall that we had shown that

$$
\left(\lambda \omega_{y}-z\right) G_{\omega, \lambda}(x, y ; z)=\sum_{u \sim y} G_{\omega, \lambda}(x, u ; z)
$$

Therefore, using that $\left(\sum_{n}\left|a_{n}\right|\right)^{s} \leq \sum_{n}\left|a_{n}\right|^{s}$, we get

$$
\mathbb{E}\left(\left|G_{\omega, \lambda}(x, y ; z)\right|^{s}\right) \leq \frac{C^{\prime}}{\lambda^{s}} \sum_{u \sim y} \mathbb{E}\left(\left|G_{\omega, \lambda}(x, u ; z)\right|^{s}\right)
$$

$$
\mathbb{E}\left(\left|G_{\omega, \lambda}(x, y ; z)\right|^{s}\right) \leq \frac{C^{\prime}}{\lambda^{s}} \sum_{u \sim y} \mathbb{E}\left(\left|G_{\omega, \lambda}(x, u ; z)\right|^{s}\right)
$$

If none of the points u is equal to x, we can iterate this argument.

$$
\begin{aligned}
\mathbb{E}\left(\left|G_{\omega, \lambda}(x, y ; z)\right|^{s}\right) & \leq \frac{C^{\prime}}{\lambda^{s}} \sum_{u \sim y} \mathbb{E}\left(\left|G_{\omega, \lambda}(x, u ; z)\right|^{s}\right) \\
& \leq \frac{C^{\prime}}{\lambda^{s}}(\sharp \text { of neighbors }) \max _{u, u \sim y} \mathbb{E}\left(\left|G_{\omega, \lambda}(x, u ; z)\right|^{s}\right) \\
& \leq\left(\frac{C^{\prime}}{\lambda^{s}}\right)^{2}(\sharp \text { of neighbors }) \sum_{u^{\prime} \sim u} \mathbb{E}\left(\left|G_{\omega, \lambda}\left(x, u^{\prime} ; z\right)\right|^{s}\right)
\end{aligned}
$$

iterating this argument, at each step we get a factor

$$
\left(\frac{C^{\prime}}{\lambda^{s}}\right)(\sharp \text { of neighbors })
$$

We can iterate this argument at most $\|x-y\|$ times,

$$
\mathbb{E}\left(\left|G_{\omega, \lambda}(x, y ; z)\right|^{s}\right) \leq\left(\left(\frac{C^{\prime}}{\lambda^{s}}\right)^{2}(\sharp \text { of neighbors })\right)^{\|x-y\|} \sup _{u \in \mathbb{Z}^{d}} \mathbb{E}\left(\left|G_{\omega, \lambda}(x, u ; z)\right|^{s}\right)
$$

We can bound the r.h.s using the a priori bound and get

$$
\mathbb{E}\left(\left|G_{\omega, \lambda}(x, y ; z)\right|^{s}\right) \leq \frac{C(\rho, s)}{\lambda^{s}}\left(\left(\frac{C^{\prime}}{\lambda^{s}}\right)^{2}(\sharp \text { of neighbors })\right)^{\|x-y\|}
$$

Finally, we take λ large enough such that

$$
\left(\left(\frac{C^{\prime}}{\lambda^{s}}\right)^{2} 2 d\right)<1
$$

Then, we have

$$
\mathbb{E}\left(\left|G_{\omega, \lambda}(x, y ; z)\right|^{s}\right) \leq \frac{C(\rho, s)}{\lambda^{s}} e^{-C\left(C^{\prime}, \lambda, s, d\right)\|x-y\|}
$$

We have shown
Theorem
Let $s \in(0,1)$. Then there exists $\lambda_{0}>0$ such that for $\lambda \geq \lambda_{0}$, there are constants $0<c, C<\infty$ such that

$$
(*) \quad \mathbb{E}\left(\left|\left\langle\delta_{x},\left(H_{\omega, \lambda}-z\right)^{-1} \delta_{y}\right\rangle\right|^{s}\right) \leq C e^{-c\|x-y\|}
$$

uniformly in $x, y \in \mathbb{Z}^{d}$ and $z \in \mathbb{C} \backslash \mathbb{R}$.

With this result, we can prove dynamical localization, and pure point spectrum. For a proof of dynamical localization, see Section 5 in G. Stolz's notes.

Theorem (The Simon-Wolff Criterion, Simon-Wolff'86)

Let Γ be a countable set of points. Let $H_{\omega}=-\Delta+V_{\omega}$ on $\ell^{2}(\Gamma)$, such that the probability distribution of the random variables, μ, is absolutely continuous. Then, for any Borel set I :

- If for Lebesgue-a.e. $E \in I$ and \mathbb{P}-a.e. ω

$$
\lim _{\varepsilon \rightarrow 0} \sum_{y \in \Gamma}\left|\left\langle\delta_{y},\left(H_{\omega}-(E+i \varepsilon)\right)^{-1} \delta_{x}\right\rangle\right|^{2}<\infty,
$$

then for \mathbb{P}-a.e. ω, the spectral measure of H associated to δ_{x} is pure point in 1 .

- If for Lebesgue-a.e. $E \in I$ and \mathbb{P}-a.e. ω

$$
\lim _{\varepsilon \rightarrow 0} \sum_{y \in \Gamma}\left|\left\langle\delta_{y},\left(H_{\omega}-(E+i \varepsilon)\right)^{-1} \delta_{x}\right\rangle\right|^{2}=\infty,
$$

then for \mathbb{P}-a.e. ω, the spectral measure of H associated to δ_{x} is continuous in l.

To prove pp spectrum, we would like to use the Simon-Wolff Criterion. Recall our result, which holds for any given $s \in(0,1)$, in the whole spectrum with λ large enough, uniformly on $z=E+i \varepsilon, \varepsilon>0$,

$$
\mathbb{E}\left(\left|\left\langle\delta_{x},\left(H_{\omega, \lambda}-z\right)^{-1} \delta_{y}\right\rangle\right|^{s}\right) \leq C e^{-c\|x-y\|}
$$

Then

$$
\mathbb{E}\left(\sum_{y}\left|\left\langle\delta_{x},\left(H_{\omega, \lambda}-z\right)^{-1} \delta_{y}\right\rangle\right|^{s}\right) \leq \sum_{y} \mathbb{E}\left(\left|\left\langle\delta_{x},\left(H_{\omega, \lambda}-z\right)^{-1} \delta_{y}\right\rangle\right|^{s}\right)<\infty .
$$

which implies that

$$
\sum_{y}\left|\left\langle\delta_{x},\left(H_{\omega, \lambda}-z\right)^{-1} \delta_{y}\right\rangle\right|^{s}<\infty \quad \text { for } \mathbb{P} \text {-a.e. } \omega \in \Omega .
$$

Because the bound is uniform on ε, we an take the limit when $\varepsilon \rightarrow 0$.

We use the inequality : If $s \in(0,1)$,

$$
\left(\sum_{n}\left|a_{n}\right|\right)^{s} \leq \sum_{n}\left|a_{n}\right|^{s}
$$

Take $s=1 / 4$,

$$
\left(\sum_{y}\left|\left\langle\delta_{x},\left(H_{\omega, \lambda}-z\right)^{-1} \delta_{y}\right\rangle\right|^{2}\right)^{\frac{1}{4}} \leq \sum_{y}\left|\left\langle\delta_{x},\left(H_{\omega, \lambda}-z\right)^{-1} \delta_{y}\right\rangle\right|^{\frac{1}{2}}<\infty
$$

for \mathbb{P}-a.e. $\omega \in \Omega$. Therefore, by the Simon-Wolff Criterion, the spectral measure associated to H_{ω} and δ_{x} is pure point in the deterministic spectrum of H_{ω}, for \mathbb{P}-a.e. $\omega \in \Omega$. Since this holds for every δ_{x}, one can deduce that

$$
\sigma\left(H_{\omega}\right)=\sigma_{p p}\left(H_{\omega}\right) \quad \text { for } \mathbb{P} \text {-a.e. } \omega \in \Omega
$$

Summary

We have seen for $H_{\omega, \lambda}=-\Delta+\lambda V_{\omega}$ that

- For any given $s \in(0,1)$, for large values of λ,

$$
(*) \quad \mathbb{E}\left(\left|\left\langle\delta_{x},\left(H_{\omega, \lambda}-z\right)^{-1} \delta_{y}\right\rangle\right|^{s}\right) \leq C e^{-c\|x-y\|}
$$

uniformly in $x, y \in \mathbb{Z}^{d}$ and $z \in \mathbb{C} \backslash \mathbb{R}$.

- The last expression implies the summability of the terms $\left|G_{\omega, \lambda}(x, y ; E+i 0)\right|^{2}$, almost surely, with $E \in \mathbb{R}$.
- The Simon-Wolff theorem relates the summability of the resolvent with the pure point spectrum or the continuous spectrum.
- The operator $H_{\omega, \lambda}=-\Delta+\lambda V_{\omega}$, for large values of λ exhibits localization in the whole spectrum.
- In the proof, it was crucial that one can isolate the dependence of the resolvent on the random variables corresponding to one or two sites ω_{x}.
- The other ingredient was the regularity of the probability distribution μ.

Summary II

We have seen so far,

- The Anderson model is used to study electronic transport in a disordered medium.
- There are different notions of localization.
- The Anderson model is an example of an ergodic operator, and it has a deterministic spectrum, which we can compute explicitly.
- the Integrated Density of States exists and gives information on the deterministic spectrum.
These results are also valid for the Anderson model on graphs
- There are two methods to prove localization for dimension $d \geq 2$: the Multiscale Analysis and the Fractional Moment Method.

Thank you !

References

- W. Kirsch, An invitation to Random Schrödinger Operators, in Random Schrödinger Operators, Panoramas et Syntheses Vol. 25, 2008 (SMF).
- G. Stolz, An introduction to the mathematics of Anderson localization, Contemporary Mathematics 551, 2010.
- M. Aizenman and S. Warzel, Random Operators : Disorder Effects on Quantum Spectra and Dynamics, Graduate Studies in Mathematics, vol 168. AMS, 2016.

