Institut für Angewandte Mathematik Stochastische Prozesse

Prof. Dr. A. Bovier / Dr. E. Petrou

Ausgabe: 29.05.2009

Abgabe: 09.06.2009

6. Übungsblatt

1. Aufgabe (3 Punkte)

Es sei $(\Omega, \mathcal{F}, \mathbb{P})$ ein Wahrscheinlichkeitsraum und sei $X = (X_n)_{n \in \mathbb{N}_0}$ ein Martingal bezüglich der Filtration $\{\mathcal{G}_n : n \in \mathbb{N}_0\}$. Ferner sei $\mathcal{F}_n = \sigma(\{X_k : 0 \le k \le n\})$. Zeigen Sie, dass $\mathcal{F}_n \subset \mathcal{G}_n$ für alle $n \in \mathbb{N}_0$ gilt, und dass X ein Martingal bezüglich \mathcal{F}_n ist.

2. Aufgabe (5 Punkte)

- (a) Es seien X ein Martingal und ϕ eine konvexe Funktion mit $\mathbb{E}|\phi(X_n)|<\infty$ für alle n. Zeigen Sie, dass $\big(\phi(X_n)\big)_{n\in\mathbb{N}}$ ein Submartingal ist.
- (b) Es seien X ein Submartingal und ϕ eine konvexe nichtfallende Funktion mit $\mathbb{E}|\phi(X_n)| < \infty$ für alle n. Zeigen Sie, dass $(\phi(X_n))_{n \in \mathbb{N}}$ ein Submartingal ist.
- (c) Geben Sie ein Beispiel für ein Submartingal X, so dass X^2 ein Supermartingal ist.

3. Aufgabe (3 Punkte)

Es sei $(\Omega, \mathcal{F}, \mathbb{P})$ ein Wahrscheinlichkeitsraum und ν ein endliches Maß auf \mathcal{F} mit $\nu \ll \mathbb{P}$. Ferner sei $(\mathcal{F}_n)_{n \in \mathbb{N}}$ eine Filtration. Sei X_n die Radon-Nikodym Dichte von ν bezüglich \mathbb{P} eingeschränkt auf \mathcal{F}_n . Zeigen Sie, dass (X_n) ein Martingal ist.

4. Aufgabe (9 Punkte)

- (a) Es seien $\Delta_1, \Delta_2, \ldots$ unabhängige Zufallsvariablen mit Erwartungswert 0. Es sei $X_1 = \Delta_1$ und $X_{n+1} = X_n + \Delta_{n+1} f_n(X_1, \ldots, X_n)$, wobei f_n eine Borel-messbare Funktion ist. Zeigen Sie: falls die X_n integrierbar sind, so ist (X_n) ein Martingal.
- (b) Es seien Y_1, Y_2, \ldots unabhängige Zufallsvariablen mit Erwartungswert 0 und Varianz σ^2 . Zeigen Sie: (X_n) ist ein Martingal, wobei $X_n = (\sum_{k=1}^n Y_k)^2 n\sigma^2$.
- (c) Es sei (Y_n) eine Markov-Kette mit endlichem Zustandsraum. Nehmen Sie an, dass $\sum_j p_{ij} x(j) = \lambda x(i)$ für alle i, wobei x(i) die Komponenten eines Rechts-Eigenvektors der Transitionsmatrix sind. Es sei $X_n = \lambda^{-n} x(Y_n)$. Zeigen Sie: (X_n) ist ein Martingal.

Gesamt: 20 Punkte