Institut für Angewandte Mathematik Stochastische Prozesse

Prof. Dr. A. Bovier / Dr. E. Petrou

Ausgabe: 15.05.2009

Abgabe: 26.05.2009

4. Übungsblatt

1. Aufgabe (5 Punkte)

Es sei $(\Omega, \mathcal{F}, \mathbb{P})$ ein Wahrscheinlichkeitsraum und sei $\mathcal{G} \subset \mathcal{F}$ eine σ -Algebra.

(a) Beweisen Sie die folgende Verallgemeinerung der Markovschen Ungleichung:

$$\mathbb{P}[|X| \ge \alpha |\mathcal{G}] \le \frac{1}{\alpha^k} \mathbb{E}[|X|^k |\mathcal{G}]$$
 P-f.s.

(b) Formulieren und beweisen Sie die Hölder-Ungleichung für bedingte Erwartungen.

2. Aufgabe (5 Punkte)

Es sei $(\Omega, \mathcal{F}, \mathbb{P})$ ein Wahrscheinlichkeitsraum und $\mathcal{G}_1, \mathcal{G}_2 \subset \mathcal{F}$ σ -Algebren. Zeigen Sie:

(a) Falls $\mathcal{G}_1 \subset \mathcal{G}_2$,

$$E[E[X|\mathcal{G}_2]|\mathcal{G}_1] = E[X|\mathcal{G}_1]$$
 f.s.

(b) Falls $\mathcal{G}_1 \subset \mathcal{G}_2$ und $\mathbb{E}[X^2] < \infty$,

$$\mathbb{E}[(X - \mathbb{E}[X|\mathcal{G}_2])^2] \le \mathbb{E}[(X - \mathbb{E}[X|\mathcal{G}_1])^2].$$

(Demzufolge wird die Streuung von X um der bedingten Erwartung bei wachsenden σ -Algebren kleiner.)

 $\text{(c)} \ \ \operatorname{Var}[X] = \mathbb{E}\big[\operatorname{Var}[X|\mathcal{G}]\big] + \operatorname{Var}\big[\mathbb{E}[X|\mathcal{G}]\big], \\ \text{wobei} \ \operatorname{Var}\big[X|\mathcal{G}\big] = \mathbb{E}\big[(X - \mathbb{E}[X|\mathcal{G}])^2|\mathcal{G}\big].$

3. Aufgabe (5 Punkte)

Es seien Y_1,Y_2,\ldots unabhängige und identisch verteilte Zufallsvariablen mit $\mathbb{E}[Y_1]=\mu$ und $\mathrm{Var}[Y_1]=\sigma^2$. Ferner sei N eine von den Y_n unabhängige, nichtnegative ganzzahlige Zufallsvariable mit $\mathbb{E}[N^2]<\infty$. Berechnen Sie den Erwartungswert und die Varianz der Zufallsvariablen $X:=\sum_{k=1}^N Y_k$.

4. Aufgabe (5 Punkte)

Die Dichte eines zweidimensionalen Gauss-verteilten Zufallsvektors (X_1, X_2) ist gegeben durch

$$f_{X_1,X_2}(x_1,x_2) = \frac{1}{2\pi\sigma_1\sigma_2\sqrt{1-\rho^2}} \exp\left[-\frac{1}{2(1-\rho^2)} \left(\frac{(x_1-\mu_1)^2}{\sigma_1^2} - 2\rho\frac{(x_1-\mu_1)(x_2-\mu_2)}{\sigma_1\sigma_2} + \frac{(x_2-\mu_2)^2}{\sigma_2^2}\right)\right].$$

Die Parameter sind jeweils $\mu_i = \mathbb{E}[X_i]$, $\sigma_i^2 = \text{Var}[X_i]$ und $\rho = \text{Cov}(X_1, X_2)/(\sigma_1 \sigma_2)^1$. Berechnen Sie für den Fall $\mu_1 = \mu_2 = 0$ die bedingte Erwartung $\mathbb{E}[X_1|X_2]$ und die bedingte Dichte $f_{X_1|X_2}$ (vgl. Proposition 2.2.7) von X_1 gegeben X_2 . Wie erhält man aus diesem Spezialfall den Fall $(\mu_1, \mu_2) \neq (0, 0)$.

Gesamt: 20 Punkte

 $^{^1 \}text{F\"{u}r Zufalls variablen } X \text{ und } Y \text{ heißt } \rho(X,Y) := \text{Cov}(X,Y) / \sqrt{\text{Var}(X) \text{Var}(Y)} \text{ \textit{Korrelations koeffizent von } X \text{ \textit{und }} Y.$