Institut für Angewandte Mathematik Stochastische Prozesse

Prof. Dr. A. Bovier / Dr. E. Petrou

Ausgabe: 04.05.09

Abgabe: 19.05.09

3. Übungsblatt

1. Aufgabe (5 Punkte)

- (a) Zeigen Sie: Sind X und Y bezüglich einer σ -Algebra $\mathcal F$ meßbare reellwertige Zufallsvariablen, dann gilt $\{\omega: X(\omega) = Y(\omega)\} \in \mathcal F$.
- (b) Sei |X| eine bezüglich \mathcal{F} meßbare Zufallsvariable. Ist dann auch X selbst \mathcal{F} -meßbar?

2. Aufgabe (5 Punkte)

Beweise Sie die Hölder-Ungleichung mit Hilfe der Jensen-Ungleichung.

3. Aufgabe (5 Punkte)

Es sei $(\Omega, \mathcal{F}, \mu)$ ein σ -endlicher Maßraum, λ das Lebesgue-Maß auf $(\mathbb{R}, \mathcal{B})$ und $f : \Omega \to \mathbb{R}$ eine nichtnegative meßbare Funktion. Zeigen Sie mit Hilfe des Satzes von Fubini: Für $p \geq 1$ gilt

$$\int f^p d\mu = \int_0^\infty pt^{p-1}\mu(f>t)\lambda(dt).$$

4. Aufgabe (5 Punkte)

Es sei $(\Omega, \mathcal{F}, \mu)$ ein σ -endlicher Maßraum und f eine meßbare und absolut integrabare Funktion. Wir definieren:

$$\mu_f(F) = \int_F f d\mu, \ F \in \mathcal{F}$$

Zeigen Sie, dass μ_f eine σ -additive Mengen Funktion auf (Ω, \mathcal{F}) ist. Wenn f nichtnegativ ist, zeigen Sie, dass μ_f ein Maß auf (Ω, \mathcal{F}) ist, das absolut stetig bezuglich μ ist.

5. Aufgabe (5 Punkte)

Es sei $\mathcal M$ die Menge aller Maße auf dem meßbaren Raum $(\Omega,\mathcal A)$. Zeigen Sie:

- (a) Die durch $\mu \ll \nu$ und $\nu \ll \mu$ definierte Relation $\mu \sim \nu$ ist eine Äquivalenzrelation.
- (b) Für endliche Maße μ und ν ist $\mu \sim \nu$ äquivalent zu $0 < \frac{d\nu}{d\mu} < \infty$ μ -f.ü.

6. Aufgabe (5 Punkte)

Es sei (Ω, \mathcal{A}) ein meßbarer Raum, wobei die σ -Algebra \mathcal{A} die Einpunktmengen enthält. Seien μ und ν diskrete Maße auf \mathcal{A} .

- (a) Geben Sie eine notwendige und hinreichende Bedingung für $\nu \ll \mu$ an.
- (b) Berechnen Sie alle μ -Dichten von ν unter der Voraussetzung $\nu \ll \mu$.

Hinweis: Das Maß μ heißt *diskret*, wenn es höchstens abzählbar viele $\omega_i \in \Omega$ und $p_i > 0$ mit $\sum_i p_i < \infty$ gibt, so dass

$$\mu = \sum_{i} p_i \delta_{\omega_i}.$$

Gesamt: 30 Punkte