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SPECTRAL ANALYSIS OF SINAI’S WALK FOR
SMALL EIGENVALUES1
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Weierstrass Institut für Angewandte Analysis und Stochastik and Technische
Universität Berlin, and Università “La Sapienza”

Sinai’s walk can be thought of as a random walk on Z with random po-
tential V , with V weakly converging under diffusive rescaling to a two-sided
Brownian motion. We consider here the generator LN of Sinai’s walk on
[−N,N] ∩ Z with Dirichlet conditions on −N,N . By means of potential
theory, for each h > 0, we show the relation between the spectral properties
of LN for eigenvalues of order o(exp(−h

√
N)) and the distribution of the

h-extrema of the rescaled potential VN(x) ≡ V (Nx)/
√

N defined on [−1,1].
Information about the h-extrema of VN is derived from a result of Neveu and
Pitman concerning the statistics of h-extrema of Brownian motion. As first
application of our results, we give a proof of a refined version of Sinai’s lo-
calization theorem.

1. Introduction. Random walks in random environments are a major para-
digm for the dynamics of systems in complex environments (see [23] for a recent
in depth review). One of the simplest special cases is the one-dimensional nearest-
neighbor random walk with i.i.d transition probabilities, px,1 − px , in the regime
where E ln px

1−px
= 0 and E ln2 px

1−px
> 0 . In this regime Sinai [21] discovered

remarkable slowing down of the diffusive time scale. Since then, the model was
investigated very intensely and in great detail both in the probabilistic and the
physics literature; see, for example, [6–8, 10–13, 15, 16, 20]. Rather recently [8],
this model was considered from the point of view of the popular concept of ageing
which is a particular manifestation of the slow down of the dynamics characterized
by a particular behavior of autocorrelation functions. It was shown that ageing re-
sults, in this model, rather directly from Sinai’s localization theorem that we shall
explain below. Another approach toward the characterization of slow dynamics
would be through the spectral properties of the generator of the process. In a re-
cent paper we have carried this out in full detail in the simplest possible model,
Bouchaud’s trap model on the complete graph [4] where we have shown, in partic-
ular, that all the standard ageing properties of the model can be derived easily from
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spectral data. Recently, the spectrum of the generator of Sinai’s random walk was
analyzed in [10, 15] using renormalization group methods. In the present paper
we give a refined and fully rigorous analysis of the bottom part of the spectrum of
Sinai’s random walk and show that this leads to a very easy proof of a (refined)
version of Sinai’s localization theorem. Another application of the spectral infor-
mation will show a limit law that expresses the fact that Sinai’s random walk can
be seen as a process that on an infinite sequence of (random) time scales appears
to be approaching equilibrium exponentially. Let us note that Comets and Popov
[7] have used control of principal eigenvalues of the generator of Sinai’s walk in
suitable intervals to obtain moderate deviation results.

Let us note that the spectral analysis of the generator can also be considered as
that of a corresponding quantum mechanical Schrödinger operator. This operator
has been considered in the context of two-dimensional electrons in a particular
random magnetic field and as an effective Hamiltonian of polyacetylene (see [1]
for a discussion and references).

1.1. Sinai’s walk. Definitions and key facts. Before stating our results, let us
fix the notation. We define an environment as a sequence, ω = {ωx}x∈Z with ωx ∈
[0,1]. For a given environment, ω, Sinai’s walk (Xn,n ≥ 0) is a discrete time
random walk on Z with transition probabilities

Prob(Xn+1 = x + 1|Xn = x) = ωx,
(1.1)

Prob(Xn+1 = x − 1|Xn = x) = 1 − ωx.

We use Pω
x to denote the law of the random walk (Xn,n ≥ 0) starting at x ∈ Z.

We will consider random environments consisting of i.i.d. sequences of random
variables, ωx , x ∈ Z, whose law will be denoted by P. We will make the usual
ellipticity assumption that, for some κ > 0,

ωx ∈ [κ,1 − κ] ∀x ∈ Z.(1.2)

We set � ≡ [κ,1 − κ]Z. To be in the situation of Sinai’s walk, we assume further
that

E
(

ln
(

ωx

1 − ωx

))
= 0,(1.3)

where E denotes the expectation w.r.t. to P, and

σ 2 ≡ E
[
ln2

(
ωx

1 − ωx

)]
> 0.(1.4)

Let us finally define the measure Px ≡ P ⊗ Pω
x on � × Z

N as

Px(F × G) =
∫
F

Pω
x (G)P(dω) ∀F ∈ F ,G ∈ G,
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where F , G are respectively the σ -algebra of Borel subsets of � and Z
N.

In this setting, it is well known (see, e.g., [23]) that the random walk is recurrent
P0-almost surely. Moreover, Sinai [21] proved that there exists a function, m(n)(ω),
depending only on the environment, such that

Xn

ln2 n
− m(n) → 0 in P0-probability,(1.5)

as n → ∞. A refinement of the above localization result was obtained by Golosov
for a slightly modified random walk [12]: for a suitable distribution function F ,

lim
n↑∞ P0

(
Xn − m(n) ln2 n ≤ y

) = F(y) ∀y ∈ R,(1.6)

namely, under P0, the random variable Xn −m(n) ln2 n converges in law. Moreover,
as shown independently in [11] and [13], the distribution of the random variable
σ 2m(n)(ω) under P converges weakly as n → ∞ to a suitable functional L of the
Brownian motion with

dProb
[
L ≤ x

]
dx

= 2

π

∞∑
k=0

(−1)k

(2k + 1)
exp

{
−(2k + 1)2π2

8
|x|

}
.

Sinai’s walk can be thought of as a random walk on Z with random potential.
Namely, define the potential V (x), x ∈ Z, as

V (x) =




x∑
i=1

ln
1 − ωi

ωi

, if x ≥ 1,

0, if x = 0,

−
0∑

i=x+1

ln
1 − ωi

ωi

, if x ≤ −1.

(1.7)

Then, the jump probabilities can be expressed as

ωx = e−∇V (x)/2/Z, 1 − ωx = e∇V (x)/2/Z,(1.8)

where Z denotes the normalizing constant and ∇V (x) ≡ V (x) − V (x − 1). The
behavior of the potential V is well described by Donsker’s invariance principle.
Given N ∈ Z+, define the rescaled potential V (N) ∈ C(R) as

V (N)(t) ≡ s√
N

V (k) + 1 − s√
N

V (k + 1)

(1.9)

if t = s
k

N
+ (1 − s)

k + 1

N
,k ∈ Z, s ∈ [0,1].

For later applications, note that V (N) is a Lipschitz function with Lipschitz con-
stant c(κ)

√
N . Due to the independence of {ωx}x∈Z and assumptions (1.3) and

(1.4), endowing the space C(R) with the topology of uniform convergence on
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compact subsets, by the Donsker’s invariance principle the random path V (N) con-
verges in distribution to B = (Bt , t ∈ R), the two-sided Brownian motion with
B0 = 0 and variance σ 2.

The Komlós–Major–Tusnády strong approximation theorem [14] (see also
Proposition 3) gives an even stronger result: given L > 0, there exist positive con-
stants C1,C2,C3 such that, for each N ∈ Z+, there exists a coupling on an enlarged
probability space between (V (N)(x), x ∈ [−L,L]) and the two-sided Brownian
motion B with variance σ such that

P (N)

(
sup

x∈[−L,L]
∣∣V (N)(x) − Bx

∣∣ >
C1 lnN√

N

)
<

C2

NC3
.(1.10)

Notational warning: in what follows, c(κ) will denote a generic constant de-
pending only on κ [see (1.2)] and it can change from expression to expression.

1.2. Generators with Dirichlet conditions. Our objective will be to control
the spectrum of the generator of Sinai’s walk with Dirichlet conditions outside a
(large) interval {−N + 1, . . . ,N − 1}. We write P ≡ P(ω) for the transition matrix
of the random walk for a fixed environment. For D ⊂ Z, we define the transition
matrix with Dirichlet conditions outside D as P(D) ≡ (Px,y)x,y∈D . It is convenient
to define the “generator,” L, of the discrete-time chain as L ≡ I − P, as well as the
corresponding Dirichlet operators L(D). Note that L(D) is the restriction to D of
the generator of Sinai’s walk killed when it leaves D.

Given u ∈ R
D , let us define ũ ∈ R

Z as ũ ≡ uID , then (L(D)u)(x) = (Lũ)(x)

for any x ∈ D. In particular, λ is an eigenvalue of L(D), shortly λ ∈ σ(L(D)), iff
∃v ∈ R

Z such that {
(L − λ)v(x) = 0, if x ∈ D,
v(x) = 0, if x /∈ D.

(1.11)

Identifying v with v|D , we say that v satisfying (1.11) is an eigenvector of L(D)

with eigenvalue λ.
Let us first describe some simple spectral results concerning L(D). Note that

the measure µ on Z defined as

µ(x) ≡ e−V (x)/ωx ∀x ∈ Z,

satisfies

µ(x)ωx = µ(x + 1)(1 − ωx+1) = e−V (x) ∀x ∈ Z.(1.12)

In particular, it is a reversible measure for L(D) for all D ⊂ Z, that is, L(D) is
a symmetric operator on L

2(D,µ) having left eigenvector µu with eigenvalue λ

whenever u is a (right) eigenvector with eigenvalue λ. Moreover, denoting by (·, ·)
the scalar product on L

2(Z,µ), one easily obtains for all f ∈ L2(Z,µ) that the
Dirichlet form is given by the expression

(f,Lf ) = ∑
x∈Z

µ(x)ωx

(
f (x + 1) − f (x)

)2
.(1.13)



202 A. BOVIER AND A. FAGGIONATO

Periodicity. Note that the Markov chains we are defining are periodic. Define
�o [�e] the subspace of R

D having even [odd] coordinates equal to zero. Trivially,
R

D = �o ⊕ �e and P(�o) ⊂ �e, P(�e) ⊂ �o. This implies the following a-priori
information on the spectra, whose proof is left to the reader:

LEMMA 1. Let D ≡ [a, b] ∩ Z. Then the matrix P(D) has simple eigenvalues
−1 < λ1 < λ2 < · · · < λ|D| < 1 and λi = −λ|D|−i+1 for all i : 1 ≤ i ≤ |D|. More-
over, if Pψ = λψ , where ψ = ψo + ψe with ψo ∈ �o, ψe ∈ �e, then Pψ ′ = −λψ ′
where ψ ′ = ψo − ψe.

1.3. h-extrema and saddles. The small eigenvalues of the generators will be
labeled by the deep minima of the potential. This will require some further no-
tation. Given a continuous path γ ∈ C([−1,1]), we say that x ∈ [−1,1] is a h-
minimum (for γ ) if there exist a, b ∈ [−1,1] with

a < x < b,
(1.14)

γ (a) ≥ γ (x) + h, γ (b) ≥ γ (x) + h and γ (x) = min[a,b]γ.

We say that x ∈ [−1,1] is a h-maximum (for γ ) if one of the following three
complementary conditions is satisfied:

(i) x is a h-minimum for −γ ,
(ii) ∃b ∈ (x,1] such that γ (x) − γ (b) ≥ h, γ (x) = max[−1,b] γ and

min[−1,x] γ > γ (x) − h,
(iii) ∃a ∈ [−1, x) such that γ (x) − γ (a) ≥ h, γ (x) = max[a,1] γ and

min[x,1] γ > γ (x) − h.

See, for example, Figure 1 where points u1, u
′
1, u2, u3 are h-minima, while

w1,w2,w3,w4 are h maxima.
When considering γ ∈ C(R), we say that x ∈ R is a h-minimum (for γ ) if there

exist a, b ∈ R satisfying (1.14) and we say that x ∈ R is a h-maximum (for γ ) if x

is a h-minimum for −γ .
In what follows we take γ ∈ C(I) with I = [−1,1] or I = R. A point x ∈ I is

called a h-extremum if it is a h-minimum or a h-maximum. We write M−
h (γ ),

M+
h (γ ) and Eh(γ ), respectively for the sets of h-minima, h-maxima and h-

extrema of γ .
Given x, x′ ∈ M±

h (γ ), we say that they are equivalent, x ∼ x′, if

max
z∈[x∧x′,x∨x′]

|γ (z) − γ (x)| < h.

Note that γ (x) = γ (x′) whenever x ∼ x′ and that z ∼ x if z ∈ M±
h (γ ), x ∼ x′ and

z ∈ [x ∧ x′, x ∨ x′]. One can easily prove that each equivalence class is a closed
subset of I and for each compact subset K ⊂ I , K intersects a finite number of
equivalence classes. We will denote by M±

h (γ ) the subset of M±
h (γ ) obtained by
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FIG. 1. h-extrema of a path in C([−1,1]).

taking for each equivalence class in M±
h (γ )/ ∼ the smallest element (if it exists).

Note that if I = [−1,1], then |M±
h (γ )| < ∞. Finally, the piece of γ between con-

secutive h-maxima in M+
h (γ ) will be called h-valley.

One can easily prove the following lemma (see Figure 1):

LEMMA 2. Given γ ∈ C([−1,1]), if M−
h (γ ) = {u1, . . . , uq} with q ≥ 1 and

u1 < u2 < · · · < uq , then M+
h (γ ) = {w1,w2, . . . ,wq+1} with

−1 ≤ w1 < u1 < w2 < u2 < · · · < wq < uq < wq+1 ≤ 1.

Moreover, for all i ∈ {1, . . . , q} and j ∈ {2, . . . , q},
γ (ui) = min[wi,wi+1]

γ, γ (w1) = max[−1,u1]
γ, γ (wj ) = max[uj−1,uj ]γ, γ (wq+1) = max[uq,1]γ.

Given γ ∈ C(I) and disjoint finite sets A,B ⊂ I , we define Z(A,B) as the set
of saddle points between A and B:

Z(A,B) ≡
{
z ∈ I :∃a ∈ A,b ∈ B with a ∧ b ≤ z ≤ a ∨ b

and γ (z) = min
a∈A,b∈B

max
a∧b≤x≤a∨b

γ (x)

}
.

Moreover, we set

z∗(A,B) ≡ min(Z(A,B))

[the definition is well posed since Z(A,B) is compact]. Note that z∗(A,B) ∈
M+

h (γ ) whenever A,B ⊂ M−
h (γ ).

Finally, given h, δ > 0, we define the family of good paths in C([−1,1]), Ah,δ ,
as the set of paths γ satisfying the following conditions:

1. M−
h (γ ) �= ∅,
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FIG. 2. Path in Ah,δ .

2.

γ
(
z∗(

x,M−
h (γ ) ∪ {−1,1} \ {x})) − γ (x) ≥ h + δ ∀x ∈ M−

h (γ ),(1.15)

3. for a suitable labeling M−
h (γ ) = {x1, x2, . . . , xq},

γ (z∗(xk, Sh,k−1)) − γ (xk) ≥ max
q≥j>k

{γ (z∗(xj , Sh,k−1)) − γ (xj )} + δ

(1.16)
∀k : 1 ≤ k ≤ q − 1,

where {
Sh,k = {−1,1}, if k = 0,
Sh,k = {x1, x2, . . . , xk} ∪ {−1,1}, if 1 ≤ k ≤ q.

Condition (1.16) is a nondegeneracy condition. It can be read as follows (see Fig-
ure 2): (x1, γ (x1)) is the most trapped starting point in γ for a walker desiring
to reach one of the points (−1, γ (−1)) and (1, γ (1)). Then (x2, γ (x2)) is the
most trapped starting point in γ for a walker desiring to reach one of the points
(−1, γ (−1)), (1, γ (1)) and (x1, γ (x1)), and so on.

We note that if γ ∈ Ah,δ , then the above labeling M−
h (γ ) = {x1, x2, . . . , xq}

is unique. In what follows, when assuming γ ∈ Ah,δ , we will always think of
x1, . . . , xq as this labeling of M−

h (γ ). In particular, q = |M−
h (γ )|. It is also conve-

nient to set (see Figure 2)

dk(γ ) = γ (z∗(xk, Sh,k−1)) − γ (xk) ∀1 ≤ k ≤ q.(1.17)

Then it is easy to prove that condition (1.16) is equivalent to the following one:

dk(γ ) ≥ dk+1(γ ) + δ ∀k : 1 ≤ k ≤ q − 1.(1.18)
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1.4. Main results. We can finally state our main results concerning the spectral
analysis of the operators L({−N + 1, . . . ,N − 2,N − 1}), N ≥ 1. Note that since
the rescaled potential V (N) defined in (1.9) converges weakly to the two-sided
Brownian motion B , it is more natural to work on the rescaled lattice Z/N . In
particular, we introduce the infinite matrix L(N) with entries

L(N)
x,y ≡ LNx,Ny ∀x, y ∈ Z/N,

and, for each D ⊂ Z/N , we denote by L(N)(D) the restriction of L(N) to D × D,
that is,

L(N)(D) ≡ (
L(N)

x,y

)
x,y∈D.(1.19)

Defining

IN ≡ (−1,1) ∩ (Z/N) ∀N ≥ 1,(1.20)

u is an eigenvector of L({−N + 1, . . . ,N − 2,N − 1}) with eigenvalue λ iff u(N ·)
is an eigenvector of L(N)(IN) with eigenvalue λ. Note that the operator L(N)(IN)

is symmetric on L
2(IN ,µN), where

µN(x) ≡ µ(Nx) ∀x ∈ Z/N.(1.21)

In what follows, we denote by VN the restriction of the rescaled potential V (N)

[see (1.9)] to [−1,1], that is,

VN : [−1,1] → R, VN(t) ≡ V (N)(t) ∀t ∈ [−1,1].(1.22)

Given a good path γ ∈ Ah,δ such that M−
h (γ ) = {x1, x2, . . . , xq} is the special

labeling satisfying condition (1.16), we use the following notation:


M−
h (γ ) = {x1, x2, . . . , xq},

M−
h,k(γ ) ≡ ∅, if k = 0,

M−
h,k(γ ) ≡ {x1, . . . xk}, if 1 ≤ k ≤ q,

Sh,k(γ ) ≡ M−
h,k(γ ) ∪ {−1,1}, if 0 ≤ k ≤ q,

S∗
h,k(γ ) ≡ Sh,k(γ ) ∪ (

Z/N \ (−1,1)
)
, if 0 ≤ k ≤ q,

dk ≡ γ (z∗(xk, Sh,k−1)) − γ (xk), if 1 ≤ k ≤ q.

(1.23)

We omit γ from the above notation when the path is understood.
Finally, we write P ω

x,N for the law of the rescaled Sinai’s random walk
(Xn/N,n ≥ 0) starting in x ∈ Z/N , with environment ω, and we set

τA = min{n ≥ 1 :Xn/N ∈ A}, A ⊂ Z/N.

THEOREM 1. Given Q,h, δ > 0 if VN ∈ Ah,δ , the number of h-minima q ≡
|M−

h | ≤ Q and the rescaling parameter N ≥ N(δ,Q), then the following holds:
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The rescaled generator L(N)(IN) with Dirichlet conditions outside (−1,1) has
exactly q eigenvalues smaller than the principal eigenvalue λ∗

N of the operator
with Dirichlet conditions outside (−1,1) and on the set of h-minima M−

h , that is,{
σ

(
L(N)(IN)

) ∩ [0, λ∗
N) = {

λ
(N)
1 < λ

(N)
2 < · · · < λ

(N)
q

}
,

λ∗
N ≡ minσ

(
L(N)(IN \ M−

h )
)
.

(1.24)

Moreover, the threshold λ∗
N satisfies

λ∗
N ≥ N−2e−h

√
N.(1.25)

Setting

hk(x) =



P ω
N,x(τxk

< τSh,k−1), if x /∈ M−
h ,

1, if x = xk ,
0, if x ∈ Sh,k−1,

(1.26)

and denoting ‖ · ‖2 the norm in L2(IN ,µN), the first q eigenvalues λ
(N)
k admit the

probabilistic approximation

λ
(N)
k = µN(xk)P

ω
N,xk

(τSh,k−1 < τxk
)

‖hk‖2
2

(
1 + O

(
e(−δ/10)

√
N ))

(1.27)

and satisfy

c(κ)N−2e−√
Ndk ≤ λ

(N)
k ≤ c′(κ)e−√

Ndk .(1.28)

Moreover, for 1 ≤ k ≤ q , there exists a normalized eigenvector ψ
(N)
k with eigen-

value λ
(N)
k such that ∥∥∥∥ψ(N)

k − hk

‖hk‖2

∥∥∥∥
2
≤ e(−δ/10)

√
N.(1.29)

PROOF. The theorem follows easily from Lemma 7, Proposition 4 and Theo-
rem 6. �

Due to (1.18) and (1.28), under the conditions of Theorem 1, the first q eigen-
values of L(N)(IN) split as follows:

λ
(N)
k ≤ c(κ)N2e−δ

√
Nλ

(N)
k+1 ∀k = 1, . . . , q − 1.(1.30)

Finally, we observe that the hypothesis of Theorem 1 is satisfied with probability
tending to one, as N tends to infinity.

THEOREM 2. For any α > 0, there exist h > 0, δ > 0, and Q < ∞, such that

lim inf
N↑∞ P

(
Ah,δ ∩ {|M−

h (VN)| ≤ Q}) ≥ 1 − α.(1.31)
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This theorem, and its extended version given by Theorem 5 of Section 2, fol-
lows from a result of Neveu and Pitman (Proposition 1) about the h-extrema of
Brownian motion and on the KMT approximation theorem [(1.10) Proposition 3].
The proof of Theorem 5 is given in Section 2.

REMARK 1. The above theorems reproduce (and partly refine) results ob-
tained in [15] via a (nonrigorous) renormalization group (RG). In Appendix A
we show that the labeling of h-minima satisfying condition (1.16) is equivalent to
the labeling obtained in [15] via the RG.

REMARK 2. Theorem 1 is very similar in nature to the results in [3] and [5]
on metastable Markov chains, respectively reversible diffusions in smooth poten-
tials and our proofs will follow the strategy outlined in these papers. The purpose
of Theorem 1 is to provide a precise relation between spectral properties of the
generator and geometric properties of the random potential VN , in particular, its
h-extrema.

The hypothesis of Theorem 1 provide, the analogue of the nondegeneracy con-
ditions required, for example, in [5]. The validity of these hypothesis, as asserted
by Theorem 2, as well as information on the statistical properties of the eigenval-
ues can be derived from the statistical properties on the h–extrema of VN . Due to
the KMT approximation theorem, the rescaled potential VN can be thought of as a
L∞-perturbation of the Brownian motion. Hence, as described in Theorem 5, the
h-extrema of VN are well approximated by the h-extrema of the Brownian motion,
whose statistics are provided by the Neveu–Pitman results. A detailed analysis is
given is Section 2.

REMARK 3. Our spectral analysis is based on potential theory, briefly dis-
cussed in Section 3. Both the formulas (1.27) and (1.29) can be restated in terms
of capacity and equilibrium potential. In fact, the equilibrium potential hxk,S

∗
h,k−1

associated to xk, S
∗
h,k−1 coincides with hk , while the capacity cap

(
xk, S

∗
h,k−1

)
be-

tween xk and Sh,k−1 satisfies

cap(xk, S
∗
h,k−1) = µN(xk)P

ω
N,xk

(τSh,k−1 < τxk
).

Hence, (1.27) corresponds to the formula

λ
(N)
k = cap(xk, S

∗
h,k−1)

‖hxk,S
∗
h,k−1

‖2
2

(
1 + O

(
e(−δ)10

√
N ))

.

A more detailed description of the eigenvector ψ
(N)
k via potential theory is given

in Theorem 6. As explained in Section 3, as we are in dimension one, both the equi-
librium potential and the capacity admit simple expressions that, together with the
results of Section 2, allow to get from Theorems 1 and 6 rather precise quantitative
estimates on the eigenvalues and eigenfunctions.
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FIG. 3. L
(N)
2 has Dirichlet conditions on the marked regions.

We briefly describe the strategy leading to the spectral analysis of L(N)(IN)

for small eigenvalues, referring to Sections 5 and 6 for more details. We suppose
VN ∈ Ah,δ and define

L(N)
k ≡ L(N)(IN \ M−

h,k), 0 ≤ k ≤ q − 1,(1.32)

that is, L(N)
k is the rescaled generator with Dirichlet conditions on M−

h,k =
{x1, x2, . . . , xk} and outside (−1,1) (see Figure 3). We call λ̄

(N)
k the principal

eigenvalue of L(N)
k :

λ̄
(N)
k ≡ minσ

(
L(N)

k

)
, 0 ≤ k ≤ q − 1.(1.33)

Note that

L(N)(IN) = L(N)
0 , λ

(N)
1 = λ̄

(N)
0 .(1.34)

The analysis of the above principal eigenvalues λ̄
(N)
k and the associated principal

eigenvectors is given in Section 5 (see Propositions 4 and 5) and is based on po-
tential theory. In Section 6, by a perturbation argument, we prove for 0 ≤ k < q

that the eigenvalue λ
(N)
k+1 and the eigenvector ψ

(N)
k+1 are well approximated respec-

tively by the principal eigenvalue λ̄
(N)
k and the principal eigenvector of L(N)

k , thus,
leading to Theorem 1 and Theorem 6.

As application of our spectral analysis, we will give a spectral proof of a refined
version of Sinai’s theorem:

THEOREM 3. Recall the definition of V (1) given in (1.9). For each n ∈ Z+ and
ω ∈ �, let m(n)(ω) ∈ M−

lnn(V
(1)) be the lnn-minimum corresponding to the bottom

of the lnn-valley covering the origin and set m(n) ≡ m(n)(ω)/ ln2 n. Fix α > 0 and
a positive function ρ on (0,∞) such that

lim
x↓0

x2/ρ(x) = 0.(1.35)
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Then, for each n, there exists a Borel subset �n ⊂ � with P(�n) ≥ 1 − α and

lim
n↑∞ inf

ω∈�n

P ω
0

(∣∣∣∣ Xn

ln2 n
− m(n)(ω)

∣∣∣∣ ≤ δn

)
= 1, δn ≡ ρ

(
ln(lnn)

lnn

)
.(1.36)

REMARK 4. We point out that, due to Golosov’s localization result (1.6), the
limit in (1.36) must hold with δn ≡ ρ(1/ lnn). Hence, Theorem 3 is not optimal.
The gap is not due to the spectral method and could be filled as follows. The proof
of Theorem 3 (given in Section 7) needs some knowledge on the local behavior
of V (lnn) around m(n) [equivalently, on the local behavior of V (1) around m(n)] in
order to prove (7.30). As already discussed in Remark 2, we study the geometric
properties of the rescaled potential by comparing it with the Brownian motion via
the KMT Approximation Theorem. While this method provides good information
about the global statistics of the h-extrema of V (lnn) in a given box, it gives a very
rough picture of the local behavior of V (lnn) around m(n). This lack of information
is paid by the factor ln lnn in the definition of δn in (1.36). In order to avoid it,
a direct analysis of V (lnn) near to m(n) as in [12] is necessary, and also sufficient.

From the spectral information we can derive easily another characterization
of the long term dynamics. Let An ⊂ Z be the box covered by the lnn-valley
of V (1) containing the origin. Set Dn = (m(n) − δn ln2 n,m(n) − δn ln2 n), where
m(n), δn are as in Theorem 3. Then construct a sequence of boxes Ank

as fol-
lows: start with An0 , n0 large. Then increase n to n1 such that, for the first time,
m(n1) �= m(n0), and so on. Finally, define λk as the second (in increasing order)
eigenvalue of L

(
Ank

)
. Then the following holds:

THEOREM 4. Fix α > 0. Then for each k, there exists a subset �nk
⊂ � with

P(�nk
) ≥ 1 − α and

lim
k↑∞ sup

ω∈�nk

|P ω
0 (Xt/λk

∈ Dnk
) − (1 − e−t )| = 0.(1.37)

Theorem 4 throws a somewhat nonageing like view on Sinai’s model. It says
that there is an infinity of diverging (and well separated) time-scales on which the
process looks as if it would approach equilibrium exponentially.

To see ageing effect, one needs to go into a different regime of time scales. In
fact, Dembo, Guionnet and Zeitouni [8] (see also [23]) have shown that

lim
n↑∞ P0(Xn ∼ Xnh) = h−2(5

3 + 2
3e−(h−1)),

that is, ageing occurs on an exponential time scale. Note that this result follows eas-
ily from Theorem 3 and the right-hand side is just the probability that mn = mnh

,
as observed in [8].

We divide the remainder of this paper as follows. In Section 2 we recall a the-
orem of Neveu and Pitman [17] about the statistics of h-extrema of Brownian
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motion and use it to derive the required statistical properties of the random poten-
tials. In particular, we prove Theorem 2 and its extension Theorem 5. In Section 3
we recall some elementary background from potential theory for later use. In Sec-
tion 4 we compute hitting times and conditional hitting times of our process. In
Section 5 we compute principle eigenvalues and eigenvectors for L(N)

k defined in
(1.32). In Section 6 we prove Theorem 6. In Section 7 we use the spectral results
to prove Theorem 3 and Theorem 4.

2. h-extrema of Brownian motion and random walks. The following result
about the statistics of h-extrema for Brownian motion is due to Neveu and Pitman
[17]. We state it here for the Brownian motion B = (Bt , t ∈ R) with variance σ 2.

PROPOSITION 1 (Neveu and Pitman [17]). The set of h-extrema Eh(B) for the
Brownian motion B = (Bt , t ∈ R) is a stationary renewal process. Setting Eh(B) =
{S(h)

n }n∈Z, with

· · · < S
(h)
−1 < S

(h)
0 ≤ 0 < S

(h)
1 < S

(h)
2 < · · · ,

then the trajectories between h-extrema (called h-slopes)(
B

S
(h)
n +t

− B
S

(h)
n

: 0 ≤ t ≤ S
(h)
n+1 − S(h)

n

)
(2.1)

are independent and, for n �= 0, identically distributed, up to changes of sign. In
particular, the variables ∣∣B

S
(h)
n+1

− B
S

(h)
n

∣∣ − h, n ∈ Z,

are independent and exponentially distributed with mean h, whereas the variables
S

(h)
n+1 − S

(h)
n , n �= 0, are i.i.d, with Laplace transform

EB

(
exp

{−λ
(
S

(h)
n+1 − S(h)

n

)}) = 1/ cosh
(

h
√

2λ

σ

)
(2.2)

and mean h2/σ 2.

[Note that in [17] the r.h.s. of (2.2) is written with
√

2λ replaced by
√

2λ. As
explained in [6], Section 2, the correct form if given by (2.2).]

Note that M−
h (γ ) = M−

h (γ ) for PB almost all γ and that, since (Bt , t ∈ R)
law=

(Bta2/a, t ∈ R) for all a > 0,(
S(h)

n , n ∈ Z
) law= (

a2S(h/a)
n , n ∈ Z

) ∀a > 0.(2.3)

As in [6], in order to describe the law of the trajectory (2.1) for n �= 0, it is con-
venient to introduce the Polish space, G, of continuous paths, γ : [0, �(γ )] → R,
defined on some interval [0, �(γ )], equipped with the metric

d(γ, γ ′) ≡ |�(γ ) − �(γ ′)| + max
t∈[0,1] |γ (t�(γ )) − γ ′(t�(γ ))|.
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FIG. 4. Definition of β,α, τ .

In the sequel, we will consider random paths as G-valued random variables.
Starting from the Brownian motion B we define (see also Figure 4)

St ≡ max{Bs : 0 ≤ s ≤ t},
τ ≡ min{t > 0 :St = Bt + h},
β ≡ Sτ ,

α ≡ max{t : 0 ≤ t ≤ τ and Bt = β}.
Note that PB a.s. there exists a unique s ∈ [0, τ ] such that Bs = β . As proved in
[17], the random paths (Bt : 0 ≤ t ≤ α) and (β − Bt : 0 ≤ t ≤ τ − α) are indepen-
dent.

Moreover, in [17] the following result is proved.

PROPOSITION 2 (Neveu and Pitman [17]). For n �= 0, the random path(∣∣B
S

(h)
n +t

− B
S

(h)
n

∣∣ : 0 ≤ t ≤ S
(h)
n+1 − S(h)

n

)
has on G the same law of the random path γB : [0, τ ] → R+ defined as

γB(t) ≡
{

β − Bα+t , if t ∈ [0, τ − α],
h + Bt−(τ−α), if t ∈ [τ − α, τ).

The above proposition, Corollary 4.4 in [18], Chapter XII and the reflection
invariance of Brownian motion easily imply the following result concerning the
behavior of the Brownian motion near to an h-extremum.

COROLLARY 1. Given n ∈ Z, let

T
(h)
n,+ ≡ min

{
t ∈ (

0, S
(h)
n+1 − S(h)

n

)
:
∣∣B

S
(h)
n +t

− B
S

(h)
n

∣∣ = h
}
,(2.4)

T
(h)
n,− ≡ max

{
t ∈ (

0, S(h)
n − S

(h)
n−1

)
:
∣∣B

S
(h)
n

− B
S

(h)
n −t

∣∣ = h
}
.(2.5)
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Moreover, let Z = BES3(0), namely, Z = (Zt ,≥ 0) is a Bessel process of dimen-
sion 3 starting at the origin, independent of the Brownian motion B . Let Th be the
hitting time

Th = min{t > 0 :σZt = h}.
Then the random paths(∣∣B

S
(h)
n +t

− B
S

(h)
n

∣∣, 0 ≤ t ≤ T
(h)
n,+

)
with n �= 0,

(∣∣B
S

(h)
n

− B
S

(h)
n −t

∣∣,0 ≤ t ≤ T
(h)
n,−

)
with n �= 1, and (σZt ,0 ≤ t ≤ Th)

have the same law on G.

LEMMA 3. Let Z = BES3(0), then

P

(
inf
s≥t

Zs < ε

)
<

√
2ε/

√
πt ∀ε, t > 0.

PROOF. Let us define Jt ≡ infs≥t Zs . By Pitman theorem (see Theorem 3.5
in [18], Chapter VI), Jt has the same law of St . In particular, by the reflection
principle for Brownian motion,

P(Jt < ε) = P(St < ε) = P(|Bt | < ε) = P
(|B1| < ε/

√
t
)
<

√
2ε/

√
πt. �

REMARK 5. Using renewal theory, one can describe the law on G of the ran-
dom path (∣∣B

S
(h)
0 +t

− B
S

(h)
0

∣∣ : 0 ≤ t ≤ S
(h)
1 − S

(h)
0

)
.

In [6] it is shown that, conditioning on the length S
(h)
n+1 − S

(h)
n , the law of the

path (|B
S

(h)
n +t

− B
S

(h)
n

| : 0 ≤ t ≤ S
(h)
n+1 − S

(h)
n ) does not depend on n, for all n ∈ Z.

Moreover, the random variable S
(h)
n+1 − S

(h)
n has respectively probability density

(σ/h)2f (x(σ/h)2) dx and x(σ/h)4f (x(σ/h)2) dx if n �= 0 and n = 0, where

f (x) = Ix>0
π

2

∑
k∈Z

(−1)k
(
k + 1

2

)
exp

{
−π2

2

(
k + 1

2

)2

x

}
.(2.6)

The above result will not be used in what follows, while we will need some in-
formation about the distribution of S

(h)
1 . This can be obtained from renewal theory

as follows. Calling F and G respectively the distribution functions of S
(h)
n+1 − S

(h)
n

for n ∈ Z \ {0} and S
(h)
1 , formula (4.7) in [9], Chapter 3, reads

G(t) =
∫ t

0

(
1 − F(y)

)
dy

/∫ t

0
y dF(y).
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Due to the above identity and integration by parts, one obtains

PB

(
S

(h)
1 ≤ t

) = tP (X(h) > t) + E(X(h);X(h) ≤ t)

E(X(h))
,(2.7)

where X(h) is a random variable with Laplace transform

E
(
exp

{−λX(h)}) = 1/ cosh
(
h
√

2λ/σ
)
.(2.8)

We conclude this section with a technical lemma whose proof is given in Ap-
pendix B. Given a path γ ∈ C(R), we define γ ∗ ≡ {γt }|t |≤1 ∈ C([−1,1]). Note
that PB a.s. M−

h (γ ∗) ⊂ M−
h (γ )∩[−1,1] and |M−

h (γ )∩[−1,1]|− |M−
h (γ ∗)| ≤ 2.

LEMMA 4. Let h,H,β, δ, ε be positive constants with h < H . Recall the def-
inition of Ah,δ given in Section 1.3 and define the events Bh,δ,Ch,δ , Dh,β,ε as

Bh,δ ≡ {
γ :∃n ∈ Z s.t.

∣∣γ (
S

(h)
n+1

) − γ
(
S(h)

n

)∣∣ < h + δ and S(h)
n , S

(h)
n+1 ∈ [−1,1]},

Ch,δ ≡ {
γ :∃(x, y) �= (x′, y′) ∈ M−

h (γ ) × M+
h (γ ) ∩ [−1,1]2,

s.t.
∣∣|γ (x) − γ (y)| − |γ (x′) − γ (y′)|∣∣ < δ

}
and

Dh,β,ε ≡
{
∃n ∈ Z :S(h)

n ∈ [−1,1] and inf
t∈[−T

(h)
n,−,T

(h)
n,+]\[−β,β]

∣∣B
S

(h)
n +t

− B
S

(h)
n

∣∣ < ε

}
.

Then,

PB

(
γ : |Eh(γ ) ∩ [−1,1]| ≥ 4

) ≥ 1 − c(α,σ )hα ∀α > 0,(2.9)

PB

(
γ : |Eh(γ ) ∩ [−1,1]| ≥ n

) ≤ e

(
1 + h2

2σ 2

)−n

,(2.10)

PB(Bh,δ) ≤ c(H,σ)(1 − e−δ/h)h−4,(2.11)

PB(Ch,δ) ≤ c(H,σ)δh−11,(2.12)

PB(Dh,β,ε) ≤ c(σ )

(
1 + ε1/4

β1/8

)
ε1/2

β1/4 ,(2.13)

where c(σ ), c(α,σ ), c(H,σ) are suitable positive constants depending respec-
tively on σ , α,σ and H,σ . In particular, for each α > 0, there exist positive con-
stants h, δ,Q such that

PB

(
γ :γ ∗ ∈ Ah,δ and |M−

h (γ ∗)| ≤ Q
) ≥ 1 − α,(2.14)

where γ ∗ ≡ {γt }|t |≤1.
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2.1. L∞-perturbations of Brownian motion. So far, we have collected proper-
ties of Brownian motion. We want to use the KMT strong approximation result to
deduce analogous results for the rescaled random walks VN defined in (1.22).

PROPOSITION 3. For suitable positive constants C1,C2,C3 depending on σ ,
given N ∈ Z+, there exists a coupling on an enlarged probability space between
V (N) and the two-sided Brownian motion B with variance σ such that

P (N)

(
sup

x∈[−1,1]
|VN(x) − Bx | > C1 lnN√

N

)
<

C2

NC3
.(2.15)

PROOF. This follows easily from the Komlós–Major–Tusnády strong approx-
imation theorem [14] and some elementary regularity estimates controlling the
variation of Brownian motion between lattice points of Z/N . �

The following lemma describes the effect of a L∞-perturbation on the location
of h-extrema.

LEMMA 5. Let h, ε > 0 and let γ, γ ′ ∈ C([−1,1]) such that

M−
h+ε(γ ) = M−

h−ε(γ ), M+
h+ε(γ ) = M+

h−ε(γ ), ‖γ − γ ′‖∞ ≤ ε

4
.

Let M−
h (γ ) = {u1, u2, . . . , uq}, M+

h (γ ) = {w1,w2, . . . ,wq,wq+1}, where

−1 ≤ w1 < u1 < w2 < · · · < uq < wq+1 ≤ 1,

and set

u′
i ≡ min

{
z ∈ [wi,wi+1] :γ ′(z) = min[wi,wi+1]

γ ′
}

∀i = 1, . . . , q,

w′
i ≡ min

{
z ∈ [ui−1, ui] :γ ′(z) = max[ui−1,ui ]

γ ′
}

∀i = 1, . . . , q + 1,

where u0 ≡ −1, uq+1 ≡ 1. Then

M−
h (γ ′) = {u′

1, u
′
2, . . . , u

′
q}, M+

h (γ ′) = {w′
1,w

′
2, . . . ,w

′
q+1}.

Moreover,

u′
i ∈ {x ∈ [wi,wi+1] :γ (x) ≤ γ (ui) + ε/2},

(2.16)
|γ ′(u′

i) − γ (ui)| ≤ ε

4
,∀i = 1, . . . , q,

w′
i ∈ {x ∈ [ui−1, ui] :γ (x) ≥ γ (wi) − ε/2},

(2.17)
|γ ′(w′

i ) − γ (wi)| ≤ ε

4
,∀i = 1, . . . , q + 1.
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PROOF. We leave the simple case q = 0 to the reader and assume here that
q ≥ 1. Due to Lemma 2,

γ ′(wi+1) − γ ′(u′
i) ≥ γ ′(wi+1) − γ ′(ui) ≥ h + ε/2 ∀i = 1, . . . , q

and, similarly, γ ′(wi) − γ ′(u′
i) ≥ h + ε/2. This, together with the definition of u′

i ,
implies that u′

i ∈ M−
h (γ ′). Let us suppose that |M−

h (γ ′)| > |M−
h (γ )|. Then at least

one of the following cases must hold:

(C1) ∃u ∈ [−1,w1] such that u ∈ M−
h (γ ′),

(C2) ∃u ∈ [wq+1,1] such that u ∈ M−
h (γ ′),

(C3) for some i ∈ {1, . . . , q}, there exists u ∈ [wi,wi+1] \ {u′
i} such that

u ∈ M−
h (γ ′).

We treat the case (C3). Let us suppose, for example, that u < u′
i . Then ∃y : u <

y < u′
i such that γ ′(y) − γ ′(u) > h and γ ′(y) − γ ′(u′

i) > h. But this would im-
ply that γ (y) − γ (u) > h − ε/2 and γ (y) − γ (u′

i ) > h − ε/2 and therefore that
M−

h−ε(γ ) ∩ [wi,wi+1] has at least two elements in contradiction with the hypoth-
esis that M−

h−ε(γ ) = M−
h (γ ). Hence, (C3) cannot hold. By similar arguments,

one can prove that both (C1) and (C2) cannot be valid. This completes the proof
that M−

h (γ ′) = {u′
1, u

′
2, . . . , u

′
q}. The proof that M+

h (γ ′) = {w′
1,w

′
2, . . . ,w

′
q+1}

is similar. In order to prove the first assertion of (2.16), we need to show that
γ (u′

i ) ≤ γ (ui) + ε/2. To this end, it is enough to observe that

γ (u′
i ) ≤ γ ′(u′

i ) + ε/4 ≤ γ ′(ui) + ε/4 ≤ γ (ui) + ε/2,

where the second inequality comes from the definition of u′
i . Note that similarly

one gets γ ′(u′
i ) ≥ γ (ui) − ε/4, thus completing the proof of (2.16). The proof of

(2.17) is similar. �

THEOREM 5. Let h, δ > 0 and let P (N), C1,C2,C3 be as in Proposition 3. Set

ε = ε(N) ≡ 4
C1 lnN√

N

and fix a function β : Z+ → (0,∞) such that limN↑∞ ε(N)/
√

β(N) = 0.
Let B∗ ≡ (Bt , t ∈ [−1,1]). On the enlarged probability space with probability

measure P (N), let Gh,δ be the event that the following conditions are fulfilled:

(i)

sup
x∈[−1,1]

|VN(x) − Bx | ≤ ε

4
= C1 lnN√

N
,

(ii)

|M−
h (VN)| = |M−

h (B∗)|, |M+
h (VN)| = |M+

h (B∗)|,
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(iii)


|VN(u′
i ) − B∗(ui)| ≤ ε/4 and |u′

i − ui | ≤ β(N), ∀1 ≤ i ≤ q,
|VN(w′

i ) − B∗(wi)| ≤ ε/4 and |w′
i − wi | ≤ β(N), ∀2 ≤ i ≤ q,

|VN(w′
i ) − B∗(wi)| ≤ ε/4

for i = 1, q + 1,w′
1 ∈ [−1, u1),w

′
q+1 ∈ (uq,1],

where 


M−
h (VN) = {u′

1 < u′
2 < · · · < u′

q},
M+

h (VN) = {w′
1 < w′

2 < · · · < w′
q < w′

q+1},
M−

h (B∗) = {u1 < u2 < · · · < uq},
M+

h (B∗) = {w1 < w2 < · · · < wq < wq+1}.
Then

lim
N↑∞P (N)(Gh,δ) = 1.(2.18)

In particular, Theorem 2 holds.

PROOF. Due to Lemma 5, (i) together with the condition

M−
h−ε(B

∗) = M−
h+ε(B

∗), M+
h−ε(B

∗) = M+
h+ε(B

∗)(2.19)

implies (ii). Note that for all h′ > 0 M−
h′ (B∗) ⊂ M−

h′ (B) ∩ [−1,1] PB -a.s., while
the smallest and the largest elements of M+

h′ (B∗) could be no h′-maxima of B .
Due to (2.11) with h, δ replaced respectively by h − ε, 2ε, and considering the
behavior of B∗ at w1,wq+1, one gets that limN↑∞ PB[(2.19) is fulfilled] = 1. Let
us suppose that the realization of B does not belong to the event Dh,β,ε defined in
Lemma 4 and that it satisfies (2.19). Then,

x ∈ [wi,wi+1] and B∗(x) ≤ B∗(ui) + ε ⇒ x ∈ [wi,wi+1] ∩ [ui − β,ui + β]
∀1 ≤ i ≤ q,

x ∈ [ui−1, ui] and B∗(x) ≥ B∗(wi) − ε ⇒ x ∈ [ui−1, ui] ∩ [wi − β,wi + β]
∀2 ≤ i ≤ q.

The above observations together with Lemmas 4 and 5 imply (2.18). We finally
note that (1.31) follows easily from (2.14) and (2.18). �

3. Potential theory. In this section we recall some elementary facts of po-
tential theory in our setting that we will need later. To this aim, we define Pω

N,x ,
Eω

N,x respectively as the probability measure and the expectation associated to the
rescaled Sinai’s random walk (Xn/N,n ≥ 0) starting in x ∈ Z/N and with envi-
ronment ω.
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3.1. Equilibrium potential and capacity. Given disjoint subsets A,B ⊂ Z/N

with |(A∪B)c| < ∞ and given λ ∈ C, the λ-equilibrium potential hλ
A,B is defined

as the function on Z/N satisfying the following system:


(
L(N) − λ

)
hλ

A,B(x) = 0, if x /∈ A ∪ B,
hλ

A,B(x) = 1, if x ∈ A,
hλ

A,B(x) = 0, if x ∈ B.
(3.1)

The definition is well posed whenever the above system has a unique solution,
that is, whenever λ is not an eigenvalue of the matrix L(N)((A ∪ B)c). In fact, it
is simple to check that this last condition implies the uniqueness of the solution,
while the existence is discussed below. h0

A,B has the probabilistic interpretation

h0
A,B(x) = Pω

N,x(τA < τB) ∀x /∈ A ∪ B,(3.2)

where τA denotes the first hitting time of the set A, that is,

τA ≡ min{n ≥ 1 :Xn/N ∈ A}.
If λ /∈ σ(L(N)((A ∪ B)c)), then denoting by g the restriction of h0

A,B(x) to
(A ∪ B)c,

hλ
A,B(x) = h0

A,B(x) + λ
(
L(N)((A ∪ B)c

) − λ
)−1

g ∀x /∈ A ∪ B.

Due to the above identity, hλ
A,B(x) is holomorphic on C \ σ(L(N)((A ∪ B)c)).

Moreover, the following probabilistic interpretation holds:

hλ
A,B(x) = Eω

N,x

(
e− ln(1−λ)τAIτA<τB

) ∀x /∈ A ∪ B,(3.3)

if

λ < min
{
σ

(
L

(
(A ∪ B)c

))}
.(3.4)

To simplify the notation, we set hA,B ≡ h0
A,B .

Given A,B as above, we define the capacity, cap(A,B), between A and B as

cap(A,B) ≡ ∑
x∈A

µN(x)
(
L(N)hA,B

)
(x) = − ∑

x∈B

µN(x)
(
L(N)hA,B

)
(x).(3.5)

We note that cap(A,B) = cap(B,A), since hA,B = 1 − hB,A, and that (3.1)
and (3.2) imply

Pω
N,x(τA < τB) = ((

I − L(N))hA,B

)
(x) ∀x ∈ Z.

Due to the above identity,

L(N)hA,B(x) =
{

Pω
N,x(τB < τA), if x ∈ A,

−Pω
N,x(τA < τB), if x ∈ B,
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which gives a probabilistic interpretation of the capacity as

cap(A,B) = ∑
x∈A

µN(x)Pω
N,x(τB < τA).

In particular, if a /∈ B ,

cap(a,B) = µN(a)
(
L(N)ha,B

)
(a) = µN(a)Pω

N,a(τB < τa).(3.6)

Another useful representation of the capacity is the well-known identity

cap(A,B) = ∑
x∈Z/N

µN(x)hA,B(x)
(
L(N)hA,B

)
(x).(3.7)

A simple renewal argument (see, e.g., [2]) gives a remarkably useful estimate of
the equilibrium potential in terms of capacities,

hA,B(x) ≤ cap(x,A)

cap(x,B)
∀x /∈ A ∪ B.(3.8)

We consider now some particular cases of subsets A,B that will be useful later.
Let supA =: a < b ≡ infB . Then,

hA,B(x) =



1, if x ≤ a,
0, if x ≥ b,
ha,b(x), if a ≤ x ≤ b,

(3.9)

where [with µN and V (N) defined in Section 1]

ha,b(x) ≡
∑b−1/N

y=x 1/(µN(y)ωy)∑b−1/N
y=a 1/(µN(y)ωy)

(3.10)

=
∑b−1/N

y=x e
√

NV (N)(y)

∑b−1/N
y=a e

√
NV (N)(y)

, a ≤ x ≤ b.

For later applications, we define

hb,a(x) ≡ 1 − ha,b(x) =
∑x−1/N

y=a e
√

NV (N)(y)

∑b−1/N
y=a e

√
NV (N)(y)

, a ≤ x ≤ b.

Due to the above identities,

cap(A,B) = µN(a)
(
L(N)hA,B

)
(a) = µN(a)ωaN

(
1 − ha,b(a + 1/N)

)
,

thus implying that cap(A,B) = cap(a, b), where

cap(a, b) ≡ 1∑b−1/N
y=a e

√
NV (N)(y)

.(3.11)
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Let us now suppose that A = {a} and B ∩ (−∞, a) �= ∅, B ∩ (a,∞) �= ∅. By
setting

b1 ≡ max{B ∩ (−∞, a)}, b2 ≡ min{B ∩ (a,∞)},
one can check that

ha,B(x) =



0, if x ≤ b1 or x ≥ b2
ha,b1(x), if b1 ≤ x ≤ a,
ha,b2(x), if a ≤ x ≤ b2,

thus implying that

cap(a,B) = cap(b1, a) + cap(a, b2).(3.12)

Notational warning. Given a ∈ Z/N and a finite subset B ⊂ Z/N such that
a /∈ B , B ∩ (−∞, a) �= ∅ and B ∩ (a,∞) �= ∅, then we set

cap(a,B) ≡ cap
(
a,B ∪ (−∞,minB) ∪ (maxB,∞)

)
.

We point out some simple estimates that will be useful in what follows.
It is convenient to introduce the following notation: given positive sequences
aN(ᾱ), bN(ᾱ), N ∈ Z+ (depending on some parameters ᾱ, including the environ-
ment ω), we write

aN(ᾱ) ∼ [c1(N), c2(N), bN(ᾱ)]
if

c1(N)bN(ᾱ) ≤ aN(ᾱ) ≤ c2(N)bN(ᾱ) ∀N ∈ Z+,∀ᾱ.

Then, if a < x < b belong to Z/N ,

ha,b(x) ∼
[

c(κ)

(b − a)N
, c′(κ)(b − a)N,

(3.13)

exp
{√

N
[
V (N)(z∗(x, b)) − V (N)(z∗(a, b))

]}]
,

hb,a(x) ∼
[

c(κ)

(b − a)N
, c′(κ)(b − a)N,

(3.14)

exp
{√

N
[
V (N)(z∗(a, x)) − V (N)(z∗(a, b))

]}]
,

cap(a, b) ∼
[

c(κ)

(b − a)N
, c′(κ), exp

{−√
NV (N)(z∗(a, b))

}]
.(3.15)

We explain (3.13) [(3.14) and (3.15) can be justified in a similar way]. Due to
(3.10), one easily gets

ha,b(x) ∼
[

1

(b − a)N
, (b−a)N, exp

{√
N max[x,b−1/N]V

(N) −√
N max[a,b−1/N]V

(N)

}]
.

Due to condition (1.2), V (N) is a Lipschitz function with Lipschitz constant
c(κ)

√
N . Therefore, the above equation implies (3.13).
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3.2. Dirichlet Green’s function. Given a finite subset D in Z/N , we define
the Dirichlet Green’s function GD as the |D| × |D|-matrix

GD ≡ (
L(N)(D)

)−1

[recall that 0 /∈ σ(L(N)(D))]. In particular, the Dirichlet problem{
L(N)f (z) = g(z), if z ∈ D,
f (z) = 0, if z /∈ D,

has a unique solution, given by

f (z) = ∑
y∈D

GD(z, y)g(y) ∀z ∈ D.(3.16)

It will be crucial in what follows to have an expression of GD in terms of equilib-
rium potentials and capacities. To this aim, we observe that, given x ∈ D, hx,Dc

satisfies the Dirichlet problem


L(N)hx,Dc(y) = 0, if y ∈ D \ {x},
L(N)hx,Dc(y) = cap(x,Dc)

µN(x)
, if y = x,

hx,Dc(y) = 0, if y ∈ Dc

(3.17)

[the second identity follows from (3.6)]. Therefore, by (3.16),

hx,Dc(z) = GD(z, x)
cap(x,Dc)

µN(x)
∀x, z ∈ D.

Since, by reversibility, µN(z)GD(z, x) = µN(x)GD(x, z), the above identity is
equivalent to

GD(x, z) = hx,Dc(z)µN(z)

cap(x,Dc)
∀x, z ∈ D.(3.18)

4. Hitting times. By standard arguments ([9], Chapter 3), (1.2) implies that
Eω

N,x(τA) < ∞ if A ⊂ Z/N and |Ac| < ∞. Due to this observation and since
τaIτa<τb

≤ τ{a,b}, we get, for a < x < b in Z/N ,

Eω
N,x

(
τ{a,b}

)
< ∞, Eω

N,x(τaIτa<τb
) < ∞.

One can express the above expectations in terms of capacities and equilibrium
potentials. In fact, the functions w1, w2 defined on Z/N as

w1(x) ≡
{

Eω
N,x

(
τ{a,b}

)
, if a < x < b,

0, if x /∈ (a, b),

w2(x) ≡
{

Eω
N,x(τaIτa<τb

), if a < x < b,
0, if x /∈ (a, b),
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satisfy the Dirichlet problems{
L(N)w1(x) = 1, if a < x < b,
w1(x) = 0, if x /∈ (a, b),

(4.1) {
L(N)w2(x) = ha,b(x), if a < x < b,
w2(x) = 0, if x /∈ (a, b).

Therefore, due to (3.16) and (3.18),

Eω
N,x

(
τ{a,b}

) = ∑
y∈(a,b)∩Z/N

µN(y)hx,{a,b}(y)

cap(x, {a, b}) ,(4.2)

Eω
N,x(τaIτa<τb

) = ∑
y∈(a,b)∩Z/N

µN(y)hx,{a,b}(y)ha,b(y)

cap(x, {a, b})(4.3)

for all a < x < b in Z/N , where hx,{a,b}(y) ≡ hx,Z/N\(a,b)(y). Note that
hx,{a,b}(y) = hx,a(y)Iy≤x + hx,b(y)Iy>x .

LEMMA 6. Given a < b in Z/N ∩ [−1,1],
max

x∈(a,b)∩Z/N
Eω

N,x

(
τ{a,b}

)

∼
[
c(κ)

N
, c′(κ)N2,(4.4)

exp
{√

N max
y∈(a,b)∩Z/N

[VN(z∗(y, {a, b})) − VN(y)]
}]

,

max
x∈(a,b)∩Z/N

Eω
N,x(τa|τa < τb)

∼
[
c(κ)

N2 , c′(κ)N3,(4.5)

exp
{√

N max
y∈(a,b)∩Z/N

[VN(z∗(y, {a, b})) − VN(y)]
}]

.

PROOF. Since hx,{a,b}(x) = 1 and, for y ∈ (a, b) ∩ Z/N ,

hx,{a,b}(y) = Pω
N,y

(
τx < τ{a,b}

) =
{

hx,a(y), if a < y < x,
hx,b(y), if x < y < b,

by means of the results of the previous section, we obtain

µN(y)hx,{a,b}(y)

cap(x, {a, b}) ∼
[
c(κ)

N
, c′(κ)N2, exp

{√
NWx,y

}]
,

µN(y)hx,{a,b}(y)ha,b(y)

cap(x, {a, b})ha,b(x)
∼

[
c(κ)

N2 , c′(κ)N3, exp
{√

NW̃x,y

}]
,
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where

Wx,y ≡




VN(z∗(x, {a, b}))
+ VN(z∗(a, y)) − VN(z∗(a, x)) − VN(y), if a < y ≤ x,

VN(z∗(x, {a, b})) − VN(x), if y = x,
VN(z∗(x, {a, b}))

+ VN(z∗(y, b)) − VN(z∗(x, b)) − VN(y), if x < y < b,

W̃x,y ≡ Wx,y + VN(z∗(y, b)) − VN(z∗(x, b)).

We claim that

Wx,y ∧ W̃x,y ≤ VN(z∗(y, {a, b})) − VN(y).(4.6)

This can be easily checked by straightforward computations as follows. By setting


M1 ≡ max[a,y] VN, M2 ≡ max[y,x] VN, M3 ≡ max[x,b] VN,

if a < y ≤ x,

M1 ≡ max[y,b] VN, M2 ≡ max[x,y] VN, M3 ≡ max[a,x] VN,

if x < y < b,

(4.7)

we can write

Wx,y + VN(y) = (M1 ∨ M2) ∧ M3 + M1 − M1 ∨ M2,
(4.8)

VN(z∗(y, {a, b})) = M1 ∧ (M2 ∨ M3).

Moreover, the following inequalities hold:{
W̃x,y ≤ Wx,y, if x ≤ y,
W̃x,y = Wx,y + M2 ∨ M3 − M3, if x > y.

At this point, (4.6) can be checked by considering the six possible orderings of
M1,M2,M3:

Having proved (4.6), (4.4) and (4.5) can be easily derived from (4.2) and (4.3)
together with the identity ha,b(x) = Pω

N,x(τa < τb) and the observation that Wy,y =
W̃y,y = VN(z∗(y, {a, b})) − VN(y). �

We conclude this section by recalling a generalization of (4.3). Given two dis-
joint subsets A,B ⊂ Z/N with |(A ∪ B)c| < ∞, the function w on Z/N defined
as

w(x) ≡
{

Eω
N,x(τAIτA<τB

), if x /∈ (A ∪ B),
0, if x ∈ A ∪ B,

is a finite function satisfying the Dirichlet problem{
L(N)w(x) = hA,B(x), if x /∈ A ∪ B,
w(x) = 0, if x ∈ A ∪ B.



SPECTRAL ANALYSIS OF SINAI’S WALK 223

In particular, due to (3.16) and (3.18), we get

Eω
N,x(τAIτA<τB

) = ∑
y /∈A∪B

G(A∪B)c(x, y)hA,B(y)

(4.9)

= ∑
y /∈A∪B

µN(y)hx,A∪BhA,B(y)

cap(x,A ∪ B)
.

5. Principal eigenvalues and eigenvectors. In this section we fix h, δ > 0
and VN ∈ Ah,δ and we usually omit the index h and the reference to the
path VN from the standard notation. In particular, we write M− ≡ M−

h (VN) =
{x1, x2, . . . , xq}, where x1, x2, . . . , xq is the labeling satisfying condition (1.16).
Moreover, we set, for 0 ≤ k ≤ q ,


M−

k ≡ {x1, . . . , xk},
Sk ≡ M−

k ∪ {−1,1},
S∗

k ≡ M−
k ∪ (

Z/N \ (−1,1)
)
.

Our target here is to study the principal eigenvalue λ̄
(N)
k and the related eigenvector

of the generator on Z/N with Dirichlet conditions on S∗
k . To this aim, recall the

definitions (1.32) and (1.33):

L(N)
k ≡ L(N)((S∗

k )c), λ̄
(N)
k ≡ minσ

(
L(N)

k

)
.

Moreover, observe that L(N)
0 = L(N)(IN) and that, due to Corollary 3 in Appen-

dix C, λ̄
(N)
0 < λ̄

(N)
1 < · · · < λ̄

(N)
q .

To get an upper bound on λ̄
(N)
k , we recall its variational characterization:

λ̄
(N)
k = inf

f ∈RZ/N

f ≡0 on S∗
k ,f �≡0

(f,L(N)f )

‖f ‖2
2

,(5.1)

where (·, ·) and ‖ · ‖2 denote respectively the scalar product and the norm in
L2(Z/N,µN).

A lower bound can be obtained using a Donsker–Varadhan like argument as
explained in [3], Lemma 4.2:

λ̄
(N)
k ≥ 1

supx /∈S∗
k

Eω
N,x(τS∗

k
)
.(5.2)

LEMMA 7. If VN ∈ Ah,δ , then

c(κ)N−2e−√
Ndk+1 ≤ λ̄

(N)
k ≤ c′(κ)e−√

Ndk+1 ∀k : 0 ≤ k ≤ q − 1,(5.3)

λ̄(N)
q ≥ c(κ)N−2e−h

√
N.(5.4)
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In particular,

λ̄
(N)
k ≤ c(κ)N2e−δ

√
Nλ̄

(N)
k+1 ∀k : 0 ≤ k ≤ q − 1.(5.5)

PROOF. We first derive an upper bound for λ̄
(N)
k , for 0 ≤ k ≤ q − 1. Let

a ≡ z∗([−1, xk+1) ∩ Sk, xk+1
)
, b ≡ z∗(

(xk+1,1] ∩ Sk, xk+1
)
,

where the saddle points are w.r.t. VN , and set f ≡ I(a,b)∩Z/N . Then

‖f ‖2
2 ≥ µN(xk+1) ≥ c(κ)e−√

NVN(xk+1),

while, by (1.13),(
f,L(N)f

) = e−√
NVN(a) + e−√

NVN(b−1/N) ≤ e−√
NVN(a) + c(κ)e−√

NVN(b).

Since f ≡ 0 on S∗
k , by (5.1), we get

λ̄
(N)
k ≤ c(κ)e−√

Ndk+1 .

To bound λ̄
(N)
k from below, we derive from (5.2) and (4.4) that

λ̄
(N)
k ≥ c(κ)N−2 exp

{
−√

N max
x /∈S∗

k

[VN(z∗(x, Sk)) − VN(x)]
}
.(5.6)

Due to Lemma 2, the maximum in the above expression is achieved for some
x ∈ M− \ Sk = {xk+1, . . . , xq}. Then, due to (1.16), the maximum has to be
achieved at x = xk+1, thus concluding the proof of (5.3). To prove (5.4), we ob-
serve that (5.6) remains true for k = q . This, together with the definition of h-
extrema, implies (5.4). Finally, (5.5) with 0 ≤ k ≤ q −2 follows from (1.16), (1.18)
and (5.3), while, for k = q − 1, it follows from (5.3), (5.4) and (1.15). �

PROPOSITION 4. Given VN ∈ Ah,δ and k ∈ {1,2, . . . , q}, λ̄
(N)
k−1 is a simple

eigenvalue of L(N)
k−1 with eigenfunction hλ

xk,S
∗
k−1

, where λ ≡ λ̄
(N)
k−1, and

cap(xk, S
∗
k−1)

‖hxk,S
∗
k−1

‖2
2

(
1 − c(κ)N2e−δ

√
N )

(5.7)

≤ λ̄
(N)
k−1 ≤ cap(xk, S

∗
k−1)

‖hxk,S
∗
k−1

‖2
2

(
1 + c(κ)N2e−δ

√
N )

.

PROOF. Note that L(N)
k is obtained from L(N)

k−1 by adding Dirichlet conditions

on xk , since S∗
k = S∗

k−1 ∪ {xk}. In particular, λ < λ̄
(N)
k is an eigenvalue of L(N)

k−1
with eigenfunction f ∈ R

Z/N iff ∃φ ∈ R such that


(L(N) − λ)f (y) = 0, if y /∈ S∗
k ,

f (y) = φ, if y = xk ,
f (y) = 0, if y ∈ S∗

k−1,
(5.8)
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and (
L(N) − λ

)
f (xk) = 0.(5.9)

Note that (5.8) is equivalent to the identity f = φhλ
xk,S

∗
k−1

. Since f is an eigen-

function, φ �= 0 and, therefore, φ can be taken equal to 1. Since λ̄
(N)
k−1 < λ̄

(N)
k due

to Corollary 3, this implies the first statement of the proposition. Let us write

hλ ≡ hλ
xk,S

∗
k−1

, h ≡ hxk,S
∗
k−1

, δhλ ≡ hλ − h,(5.10)

and show that hλ can be approximated by h for λ < λ̄
(N)
k . In fact, the function δhλ

satisfies the system{
δhλ(y) = 0, if y ∈ S∗

k ,(
L(N) − λ

)
δhλ(y) = λh(y), if y /∈ S∗

k ,
(5.11)

thus implying δhλ = λ(L(N)
k − λ)−1h and, therefore,

‖δhλ‖2 = ‖δhλ‖L2((S∗
k )c,µN )

(5.12)

≤ λ

λ̄
(N)
k − λ

‖h‖L2((S∗
k )c,µN ) ≤ λ

λ̄
(N)
k − λ

‖h‖2.

Due to (5.9), (5.11) and the identity

(
L(N)h

)
(x) = Aδx,xk

∀x /∈ (S∗
k−1)

c, where A ≡ cap(xk, S
∗
k−1)

µN(xk)

[which follows from (3.6)], we obtain(
L(N) − λ

)
δhλ = λh − Aδx,xk

on (S∗
k−1)

c.(5.13)

By taking the scalar product in L
2(µN) with h, which is zero on S∗

k−1, we get
(
h,L(N)δhλ) − λ(h, δhλ) = λ(h,h) − A(h, δx,xk

).(5.14)

Due to reversibility, the first addendum is zero. Moreover, since A(h, δx,xk
) =

cap(xk, S
∗
k−1), (5.12) and (5.14) imply

∣∣∣∣λ − cap(xk, S
∗
k−1)

‖h‖2
2

∣∣∣∣ ≤ λ2

λ̄
(N)
k − λ

.(5.15)

The assertion follows now by considering the case λ ≡ λ̄
(N)
k−1 and using (5.5). �

We conclude the section with a description of the principal eigenfunction
of L(N)

k−1.
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PROPOSITION 5. If VN ∈ Ah,δ and k ∈ {1,2, . . . , q}, then the function
hλ

xk,S
∗
k−1

, λ = λ̄
(N)
k−1, satisfies

hxk,S
∗
k−1

(y) ≤ hλ
xk,S

∗
k−1

(y) ≤ hxk,S
∗
k−1

(
1 + c(κ)N5e−δ

√
N )

.(5.16)

PROOF. For simplicity of notation, let λ ≡ λ̄
(N)
k−1 and let hλ,h, δhλ be defined

as in (5.10).
Since λ̄

(N)
k−1 < λ̄

(N)
k and the latter is the principal eigenvalue of L(N)

k , hλ ad-
mits the probabilistic interpretation (3.3). Comparing it with (3.2), one gets the
inequality on the left in (5.16).

To prove the inequality on the right, we observe that δhλ satisfies (5.11), and
therefore, {

L(N)δhλ(y) = λhλ(y), if y /∈ S∗
k ,

δhλ(y) = 0, if y ∈ S∗
k .

Due to the above Dirichlet problem and (3.16), we obtain

hλ(y)

h(y)
= 1 + λ

h(y)

∑
z/∈S∗

k

G(S∗
k )c (y, z)

hλ(z)

h(z)
h(z) ∀y /∈ S∗

k .

The above identity implies

hλ(y)

h(y)
≤ 1 + λM

h(y)

∑
z/∈S∗

k

G(S∗
k )c (y, z)h(z),

where M ≡ maxz/∈S∗
k

hλ(z)
h(z)

. From the above inequality, (3.2) and (4.9), we derive

M ≤ 1 + λM max
y /∈S∗

k

Eω
N,y(τxk

|τxk
< τS∗

k−1
).(5.17)

Due to Lemma 6,

max
y /∈S∗

k

Eω
N,y(τxk

|τxk
< τS∗

k−1
)

(5.18)

≤ c(κ)N3 exp
{√

N max
y /∈S∗

k

[VN(z∗(y, Sk)) − VN(y)]
}
.

If 1 ≤ k < q , then Lemma 2 and (1.16) imply that the above maximum is achieved
for y = xk+1. (5.3) then implies

Eω
N,y(τxk

|τxk
< τS∗

k−1
) ≤ c(κ)N3

λ̄
(N)
k

, if 1 ≤ k < q.

Therefore, due to (5.5) and (5.17), we get M ≤ 1 + c(κ)MN5e−δ
√

N , which im-
plies (5.16). If k = q , then the r.h.s. of (5.18) can be bounded by eh

√
N . Due to (5.3)

and condition (1.15), one get that M ≤ 1+c(κ)MN3e−δ
√

N , which implies (5.16).
�
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6. The set σ(L(N)(IN)) ∩ (0, λ̄
(N)
k ). As in Section 5, we fix h, δ > 0, VN ∈

Ah,δ and we usually omit the index h and the reference to the path VN from the
standard notation.

Given 1 ≤ k ≤ q , λ < λ̄
(N)
k is an eigenvalue of L(N)(IN) = L(N)

0 with eigen-
vector f λ ∈ R

Z/N if and only if, for suitable constants φλ(y) with y ∈ M−
k ,


(
L(N) − λ

)
f λ(y) = 0, if y /∈ S∗

k ,
f λ(y) = φλ(y), if y ∈ M−

k ,
f λ(y) = 0, if y ∈ S∗

k \ M−
k ,

(6.1)

[note that S∗
k \ M−

k = Z/N \ (−1,1)] and(
L(N) − λ

)
f λ(y) = 0 ∀y ∈ M−

k .(6.2)

System (6.1) is equivalent to the identity

f λ(y) = ∑
x∈M−

k

φλ
xhλ

x,S∗
k \{x}(y) ∀y ∈ Z/N.(6.3)

It is convenient to introduce a shortened notation by defining

hλ
x ≡ hλ

x,S∗
k \{x}, hx ≡ hx,S∗

k \{x}

(note that hλ
x depends on k). Assuming (6.3), condition (6.2) is equivalent to∑

x∈M−
k

φλ
x

((
L(N) − λ

)
hλ

x

)
(y) = 0 ∀y ∈ M−

k .(6.4)

Let us denote by Ek(λ) the k × k-matrix

(Ek(λ))x,z = ((
L(N) − λ

)
hλ

z

)
(x) ∀x, z ∈ M−

k ,(6.5)

and by Êk(λ) the k × k-matrix

(Êk(λ))x,z = 1

µN(x)

(Ek(λ))x,z

‖hx‖2‖hz‖2
.(6.6)

Note that both Ek(λ) and Êk(λ) are well defined and holomorphic on C \σ(L(N)
k ).

Then the above observations imply:

LEMMA 8. λ < λ̄
(N)
k is an eigenvalue of L(N)

0 iff det(Ek(λ)) = 0. In this

case, f λ : Z/N → R is an eigenvector of L(N)
0 with eigenvalue λ iff f λ =∑

x∈M−
k

φλ
xhλ

x for some eigenvector φλ :M−
k → R of Ek(λ) with eigenvalue 0.

Moreover, det(Ek(λ)) = 0 iff det(Êk(λ)) = 0, and Ek(λ)φ = 0 iff Êk(λ)φ̂ = 0, where
φ̂x = φx‖hx‖2 for all x ∈ M−

k .
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Note that we can write, for any x, z ∈ M−
k ,

(Ek(λ))x,z = µN(x)
((

hx,L
(N)hz

) − λ(hx,hz) − λ(hx, δh
λ
z )

)
,(6.7)

where δhλ
z (y) ≡ hλ

z (y) − hz(y), respectively

(Êk(λ))x,y = K(k)
x,z − λIx,z − λA(k)

x,z − λB(k)
x,z ∀x, z ∈ M−

k ,(6.8)

where

K(k)
x,x ≡ (hx,L

(N)hz)

‖hx‖2‖hz‖2
, A(k)

x,z ≡ (hx, hz)

‖hx‖2‖hz‖2
(1 − δx,z),

B(k)
x,z ≡ (hx, δh

λ
z )

‖hx‖2‖hz‖2
.

The above k × k-matrix K(k) is called the normalized capacity matrix K(k).
Due to (3.7), K(k) is a symmetric matrix with diagonal elements given by

K(k)
x,x = ‖hx‖−2

2 cap(x, S∗
k \ {x}).(6.9)

Note that due to (5.7), if VN ∈ Ah,δ , then
∣∣∣∣K

(k)
xk,xk

λ̄
(N)
k−1

− 1
∣∣∣∣ ≤ cN2e−δ

√
N.(6.10)

Moreover, ordering the entries of K(k) along the increasing order of x1, x2, . . . ,

xk , the matrix K(k) is Jacobian. Namely, let {x1, x2, . . . , xk} = {u1, u2, . . . , uk}
with u1 < u2 < · · · < uk and set Ai,j ≡ K(k)

ui ,uj . Then A = (Ai,j )1≤i,j≤d is sym-
metric and Ai,j = 0 if |i − j | > 1. This follows easily from the following observa-
tion: setting u0 ≡ −1, uk+1 ≡ 1, then the support of hui

, L(N)hui
is respectively

given by (ui−1, ui+1), [ui−1, ui+1] for all i = 1, . . . , k.
The following proposition will allow us to think of Êk(λ), with λ ∈ C\σ(L(N)

k )

small, as obtained by a small perturbation from the matrix(
K(k)

xk,xk
δxk,xδxk,z − λδx,z

)
x,z, with x, z ∈ M−

k .

PROPOSITION 6. If VN ∈ Ah,δ and 1 ≤ k ≤ q , then

K(k)
xj ,xj

≤ CN2e−δ
√

NK(k)
xk,xk

∀1 ≤ j < k,(6.11)

K(k)
xi ,xj

≤ CN2e(−δ/2)
√

NK(k)
xk,xk

∀1 ≤ i, j ≤ k, (i, j) �= (k, k),(6.12)

A(k)
xi ,xj

≤ CN2e(−δ/4)
√

N ∀1 ≤ i, j ≤ k, i �= j(6.13)

∣∣B(k)
xi ,xj

∣∣ ≤ |λ|
dist(λ, σ (L(N)

k ))
∀λ ∈ C \ σ

(
L(N)

k

)
,∀1 ≤ i, j ≤ k.(6.14)
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PROOF. Proposition 6 is analogous to the corresponding statements in [5] and
we refer for the details to that paper.

The main ingredient of the proof are the nondegeneracy conditions. In fact,
equation (6.11) follows from (6.10) and (5.5). Equation (6.12) follows from
(6.11) using the Schwarz inequality, |(hxi

,L(N)hxj
)| ≤ (hxi

,L(N)hxi
)1/2(hxj

,

L(N)hxj
)1/2, that is, |K(k)

xi ,xj | ≤
√

K(k)
xi ,xiK

(k)
xj ,xj .

Equation (6.13) is just a statement that the functions hx and hy are almost or-
thogonal. This is completely analogous to Lemma 4.5 of [5].

To prove equation (6.14), note that δhλ
xj

= hλ
xj

−hxj
satisfies the Dirichlet prob-

lem {(
L(N) − λ

)
δhλ

xj
(y) = λhxj

(y), if y /∈ S∗
k ,

δhλ(y) = 0, if y ∈ S∗
k .

Thus, δhλ
xj

= λ(L(N)
k − λ)−1hxj

, implying

‖δhλ
xj

‖2 ≤ |λ|
dist(λ, σ (L(N)

k ))
‖hxj

‖2.

(6.14) now follows from the Schwarz inequality. �

We can now prove the main result of this section:

THEOREM 6. If VN ∈ Ah,δ , q ≡ |M−
h | ≤ Q, N ≥ N(δ,Q), then the following

hold:

σ
(
L(N)

0

) ∩ [
0, λ̄(N)

q

) = {
λ̄

(N)
0 = λ

(N)
1 < λ

(N)
2 < · · · < λ(N)

q

}
(6.15)

and ∣∣∣∣ λ
(N)
k

λ̄
(N)
k−1

− 1
∣∣∣∣ ≤ e(−δ/10)

√
N ∀k = 1,2, . . . , q.(6.16)

Moreover, λ
(N)
k is a simple eigenvalue with normalized eigenfunction ψ

(N)
k :

ψ
(N)
k = a

(k)
k

hλ
xk,S

∗
k−1

‖hλ
xk,S

∗
k−1

‖2
+

k−1∑
j=1

a
(k)
j

hλ
xj ,S∗

k \{xj }
‖hλ

xj ,S∗
k \xj

‖2
, λ ≡ λ

(N)
k ,(6.17)

where a
(k)
j , 1 ≤ j ≤ k, are constants satisfying

1−e(−δ/10)
√

N ≤ a
(k)
k ≤ 1,

∣∣a(k)
j

∣∣ ≤ e(−δ/10)
√

N ∀1 ≤ j ≤ k−1.(6.18)

In particular, ∥∥∥∥ψ(N)
k − hxk,S

∗
k−1

‖hxk,S
∗
k−1

‖2

∥∥∥∥
2
≤ e(−δ/10)

√
N.(6.19)
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PROOF. To prove that the set σ(L(N)
0 ) ∩ [0, λ̄

(N)
q ) has cardinality at least q ,

we apply Lagrange’s theorem [22] stating the following: let ϕ be a holomorphic
function defined on a open set D ⊂ C containing a point a. If there exists a contour
γ around a and inside D such that |ϕ(z)| < |z − a| for any z in the support of γ ,
then the equation

a − z + ϕ(z) = 0(6.20)

has a unique solution in the interior of γ .
Fix 1 ≤ k ≤ q and recall the definition of λ̄

(N)
k given in (1.33). Since L(N)

0 has

only positive eigenvalues and due to Lemma 8, λ < λ̄
(N)
k is an eigenvalue of L(N)

0
if and only if

det(Êk(λ)) = 0.(6.21)

Let us define

Dk ≡ {
λ ∈ C : |�(λ)| < �(λ), e(−δ/8)

√
Nλ̄

(N)
k−1 < �(λ) ≤ e(−δ/4)

√
Nλ̄

(N)
k

}
.

Note that, due to (5.5), Dk is nonempty if N ≥ N(δ). Moreover, for N ≥ N(δ),

|λ|
dist(λ, σ (L(N)

k ))
≤ √

2
�(λ)

λ̄
(N)
k − �(λ)

≤ 2e(−δ/4)
√

N ∀λ ∈ Dk.

Due to (6.8), (6.10), Proposition 6 and the above estimate, for all λ ∈ Dk , we can
write

Êk(λ) = V (k)(λ) + W(k)(λ),(6.22)

where, for all x, y ∈ M−
k and for N ≥ N(δ),

V (k)
x,y = K(k)

xk,xk
δx,xk

δy,xk
− λδx,y,(6.23)

K(k)
xk,xk

≤ λ̄
(N)
k−1

(
1 + e(−δ/2)

√
N )

,(6.24)
∣∣W(k)

x,y(λ)
∣∣ ≤ cN2e(−δ/4)

√
N (|λ| + λ̄

(N)
k−1

) ≤ 2cN2e(−δ/8)
√

N |λ|.(6.25)

Note that the last inequality in (6.25) follows from the definition of Dk .
In what follows we suppose N ≥ N(δ) such that 2cN2e(−δ/8)

√
N < e(−δ/9)

√
N ,

thus implying that |W(k)
x,y(λ)| < e(−δ/9)

√
N |λ|.

Let us write

det(Êk(λ))
(6.26)

= ∑
τ

(−1)sgn(τ )(Êk(λ))x1,τ (x1)(Êk(λ))x2,τ (x2) · · · (Êk(λ))xk,τ (xk),
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where τ varies among the permutations of M−
k and sgn(τ ) denotes its sign. Let us

consider the addendum in the r.h.s. associated to τ equal to the identity, that is,

(
K(k)

xk,xk
− λ + W(k)

xk,xk
(λ)

) k−1∏
j=1

(−λ + W(k)
xj ,xj

(λ)
)
.

It can be written as K
(k)
xk,xk (−λ)k−1 + (−λ)k + φ̃(λ), where φ̃(λ) is a holomorphic

function on Dk with |φ̃(λ)| ≤ c(k)(|λ| + λ̄
(N)
k−1)|λ|k−1e−(δ/9)

√
N .

Note that if the permutation τ is different from the identity and if λ ∈ Dk , then
∣∣(Êk(λ))xj ,τ (xj )

∣∣ ≤ |λ|(1 + e(−δ/9)
√

N ) ∀1 ≤ j < k,

∣∣(Êk(λ))xj0 ,τ (xj0 )

∣∣ ≤ |λ|e(−δ/9)
√

N, for some 1 ≤ j0 ≤ k,

∣∣(Êk(λ))xk,τ (xk)

∣∣ ≤ (|λ| + λ̄
(N)
k−1

)(
1 + e(−δ/9)

√
N )

[in the last estimate we have used (6.24)]. The above observations imply that, for
λ ∈ Dk ,

det(Êk(λ))/(−λ)k−1 = K(k)
xk,xk

− λ + φ(λ),(6.27)

where φ(λ) is a holomorphic function with

|φ(λ)| ≤ c′(k)e(−δ/9)
√

N (|λ| + λ̄
(N)
k−1

)
.(6.28)

Let γ be the circle in C around K
(k)
xk,xk of radius r = 6c′(k)e−(δ/9)

√
Nλ̄

(N)
k−1. Due to

this choice, (6.10) and (5.5), if N ≥ N(Q,δ) and λ ∈ supp(γ ), then λ ∈ Dk and the
r.h.s. of (6.28) is strictly bounded from above by r = |K(k)

xk,xk − λ|. Therefore, by
Lagrange’s theorem, there is one and only one eigenvalue λ

(N)
k of L(N)

0 inside γ

[thus implying that λ
(N)
k ∈ Dk].

Since all the sets Dk are disjoint,∣∣σ (
L(N)

0

) ∩ [
0, λ̄

(N)
k

)∣∣ ≥ q,

while, due to Proposition 9, the l.h.s. is not larger than q . That completes the proof
of (6.15).

Let a = (ax)x∈M−
k

be a (right) eigenvector of Êk(λ
(N)
k ) with eigenvalue 0. We

can suppose that a is normalized, that is,
∑k

j=1 |axj
|2 = 1, and axk

≥ 0. For 1 ≤
i < k, the identity (Êk(λ

(N)
k )a)xi

= 0 reads

axi
= ∑

1≤j≤k

j �=i

W
(k)
xi ,xj (λ

(N)
k )

λ
(N)
k

axj
.
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The above expression and the normalization assumption imply

|axi
| ≤ √

ke(−δ/9)
√

N.(6.29)

Since a2
xk

= 1 − ∑k−1
i=1 |axi

|2, we get

1 ≥ axk
≥ 1 − k3/2e(−δ/9)

√
N.(6.30)

Estimates (6.29) and (6.30) together with Lemma 8 imply (6.17) and (6.18).
To prove (6.16), let a be defined as above. Then the identity (Êk(λ

(N)
k )a)xk

= 0
reads (

1 − K
(k)
xk,xk

λ
(N)
k

)
=

k−1∑
j=1

W
(k)
xk,xj (λ

(N)
k )axj

λ
(N)
k axk

.

By the Schwarz inequality, due to (6.29) and (6.30),
∣∣∣∣1 − K

(k)
xk,xk

λ
(N)
k

∣∣∣∣ ≤ cqe(−δ/10)
√

N.

The above estimate together with (6.10) implies (6.16).
The last estimate (6.19) follows by straightforward computations from (6.17),

(6.29), (6.30) and (5.16). �

7. Subdiffusive behavior (proofs of Theorem 3 and Theorem 4). We begin
with the proof of Theorem 3.

Given a path γ ∈ C(R), denote by (m1(γ ),m(γ ),m2(γ )) the consecutive
1-extrema (disregarding equivalent points) of the 1-valley of γ covering the origin
(if existing), namely,

m1(γ ) ≡ max{x :x < 0 and x ∈ M+
1 (γ )},

m2(γ ) ≡ min{x :x ≥ 0 and x ∈ M+
1 (γ )},

{m(γ )} ≡ (m1(γ ),m2(γ )) ∩ M−
1 (γ ).

In particular, the lnn-extrema of the lnn-valley of V (1) covering the origin can be
written as

a(n)(ω) ≡ max
{
x :x < 0 and x ∈ M+

lnn

(
V (1))} = m1

(
V (ln2 n)(ω)

)
ln2 n,

b(n)(ω) ≡ min
{
x :x ≥ 0 and x ∈ M+

lnn

(
V (1))} = m2

(
V (ln2 n)(ω)

)
ln2 n,

m(n)(ω) ≡ m
(
V (ln2 n)(ω)

)
ln2 n = m(n)(ω) ln2 n.

Note that the above quantities are defined P a.s. since lim supx→±∞ V (x) = ∞
and lim infx→±∞ V (x) = −∞ P a.s.
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Given 0 < β, δ, δ′ < 1, we denote by Bβ,δ,δ′ the set of paths γ ∈ C(R) such that
the following properties hold [for m1 = m1(γ ), m2 = m2(γ ), m = m(γ )]:

−m1,m2 ≤ 1/δ′,(7.1)

M−
1 (γ ) ∩ [−1/δ′,m) �= ∅, M−

1 (γ ) ∩ (m,1/δ′) �= ∅,(7.2)

M−
1−δ(γ ) ∩ [−1/δ′,1/δ′] = M−

1+δ(γ ) ∩ [−1/δ′,1/δ′],(7.3)

γ (m1) ∧ γ (m2) ≥ max[0∧m,0∨m]V + δ,(7.4)

γ (m) ≥ −1/δ,(7.5)

γ (m1) ∧ γ (m2) ≥ max|x−m|≤β
γ + δ.(7.6)

Due to the properties of Brownian motion and by means of the results of Section 2,
one can show that there exist β, δ, δ′, n0 such that the set

�̄n ≡ {
ω ∈ � :V (ln2 n)(ω) ∈ Bβ,δ,δ′

}
has probability P(�̄n) ≥ 1 − α/2 if n ≥ n0.

Fix β, δ, δ′ as above and set N ≡ ln2 n. Let P (N) and C1,C2,C3 be as in Propo-
sition 3 with the interval [−1,1] replaced by [−1/δ′,1/δ′]. Set

εn ≡ C1 lnN√
N

, δn ≡ ρ(εn),

where ρ is defined as in Theorem 3. Note that δn differs from its definition in
Theorem 3 by the factor C1. It is simple to check that this is not restrictive.

Consider on the enlarged probability space with measure P (N) the event C(N)
δ,δ′

that the following conditions are satisfied, where B̄ = (B(x) :x ∈ [−1/δ′,1/δ′])
and C4 is a fixed positive constant with C4 > 4 and 1 + 2C1 − C1C4 < 0:

sup
|x|≤1/δ′

∣∣V (N)(x) − B(x)
∣∣ ≤ εn,(7.7)

M−
1+C4εn

(B̄) = M−
1−C4εn

(B̄), M+
1+C4εn

(B̄) = M+
1−C4εn

(B̄),(7.8)

inf
δn/2≤s≤T

(1)
k,+

∣∣B
S

(h)
k +s

− B
S

(h)
k

∣∣ ≥ C4εn

(7.9)
if k ∈ Z and S

(h)
k ∈ [−1/δ′,1/δ′],

inf
δn/2≤s≤T

(1)
k,−

∣∣B
S

(h)
k

− B
S

(h)
k −s

∣∣ ≥ C4εn

(7.10)
if k ∈ Z and S

(h)
k ∈ [−1/δ′,1/δ′],

inf|s|≤δn/2

∣∣B
S

(h)
k +s

− B
S

(h)
k

∣∣ ≤ 1/2

(7.11)
if k ∈ Z and S

(h)
k ∈ [−1/δ′,1/δ′].
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Recall that {S(h)
k }k∈Z is the set of h-extrema of B , while the random times T

(h)
k,±

have been defined in Corollary 1. We stress that the above conditions (7.7)–(7.11)
will be used only for proving (7.30) below, which could be done more efficiently
by a direct analysis of the potential V around the minimum m as in [12] (see
Remark 4).

By means of the results of Section 2, one can check that

lim
N↑∞P (N)(C(N)

δ,δ′
) = 1.

We point out that in order to estimate the probability of the events (7.9) and (7.10)
one has to use Lemma 3 [see also the proof of (2.13) in order to treat the case
n = 0] together with the property that limn↑∞ εn/

√
δn = 0.

Let �n be the event in the enlarged probability space given by

�n ≡ C(N)
δ,δ′ ∩ {

V̄ (N) ∈ Bβ,δ,δ′
}
.(7.12)

Then P (N)(�n) ≥ 1 −α if n is large enough. In what follows, we will assume that
the event �n is realized.

Let us set

An ≡ (
a(n), b(n)) ∩ Z,

(7.13)
Dn ≡ ((

m(n) − δn

)
ln2 n,

(
m(n) + δn

)
ln2) ∩ An.

Recall that L(An) is defined as L(An) = (Lx,y)x,y∈An . We write P(An) for the
restriction of the jump probability matrix to An ×An, namely, P(An) = I−L(An).
Then

Pω
0

(∣∣∣∣ Xn

ln2 n
− m(n)

∣∣∣∣ ≤ δn

)

= Pω
0 (Xn ∈ Dn) ≥ Pω

0 (Xn ∈ Dn,Xk ∈ An∀0 ≤ k ≤ n)(7.14)

= ∑
y∈Dn

(P(An)
n)0,y = 1

µ(0)
(10,P(An)

n1Dn),

where, in general, 1Y denotes the characteristic function of the set Y and (·, ·)
denotes the scalar product in L

2(An,µ) (the related norm will be denoted by ‖ · ‖).
By the same arguments of Section 5.5, due to (7.1) and (7.3), we obtain that the

principal eigenvalue λ
(n)
1 of L(An) is a simple eigenvalue satisfying

c′(lnn)−4n−1−δ ≤ λ
(n)
1 ≤ cn−1−δ.(7.15)

Moreover, defining the function hλ on An as

hλ(y) ≡ hλ
m(n),Ac

n
(y) ∀y ∈ An,
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and setting h ≡ h0, a principal eigenvector of L(An) is given by hλ
(n)
1 and (see

Proposition 5)

h(x) ≤ hλ
(n)
1 (x) ≤ h(x)

(
1 + p(lnn)n−δ) ∀x ∈ An,

where, here and in what follows, p denotes a generic polynomial having positive

coefficients. In particular, the eigenvector ψ
(n)
1 obtained by normalizing hλ

(n)
1 , that

is, ψ
(n)
1 ≡ hλ

(n)
1 /‖hλ

(n)
1 ‖, satisfies∣∣∣∣ψ(n)

1 (x) − h(x)

‖h‖
∣∣∣∣ ≤ h(x)

‖h‖ p(lnn)n−δ ∀x ∈ An,

(7.16) ∥∥∥∥ψ(n)
1 − h

‖h‖
∥∥∥∥ ≤ p(lnn)n−δ.

We denote by λ
(n)
2 < λ

(n)
3 < · · · < λ

(n)
|An| the remaining (simple) eigenvalues of

L(An) and by ψ
(n)
2 ,ψ

(n)
3 , . . . ,ψ

(n)
|An| the related normalized eigenvectors. Due to

(7.1), (7.3) and Theorem 1, λ
(n)
2 can be bounded from below as

λ
(n)
2 ≥ c(lnn)−4n−1+δ.(7.17)

Since P(An) has simple eigenvalues given by

1 − λ
(n)
1 > 1 − λ

(n)
2 > · · · > 1 − λ

(n)
|An|,

with related eigenvectors ψ
(n)
1 ,ψ

(n)
2 , . . . ,ψ

(n)
|An|, we can write

1

µ(0)
(10,P(An)

n1Dn) =
|An|∑
j=1

(
1 − λ

(n)
j

)n(
ψ

(n)
j ,1Dn

)
ψ

(n)
j (0).(7.18)

Let � be the orthogonal projection of L2(An,µ) along the subspace generated by
ψ

(n)
k with 2 ≤ k ≤ |An| − 1. Since, by Lemma 1,

sup
1<j<|An|

∣∣1 − λ
(n)
j

∣∣ = 1 − λ
(n)
2 ,

we obtain the bound ∣∣∣∣∣
|An|−1∑
j=2

(
1 − λ

(n)
j

)n(
ψ

(n)
j ,1Dn

)
ψ

(n)
j (0)

∣∣∣∣∣
=

∣∣∣∣ 1

µ(0)
(10,P(An)

n�1Dn)

∣∣∣∣(7.19)

≤ c(κ)
(
1 − λ

(n)
2

)n‖1Dn‖.
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We claim that

lim
n↑∞ sup

�n

∣∣(1 − λ
(n)
1

)n(
ψ

(n)
1 ,1Dn

)
ψ

(n)
1 (0) − 1

∣∣ = 0,(7.20)

lim
n↑∞ sup

�n

∣∣(1 − λ
(n)
|An|

)n(
ψ

(n)
|An|,1Dn

)
ψ

(n)
|An|(0)

∣∣ = 0,(7.21)

lim
n↑∞ sup

�n

(
1 − λ

(n)
2

)n‖1Dn‖ = 0.(7.22)

Note that the above estimates together with (7.14) and (7.18) imply Theorem 3.
Let us prove (7.20). Due to (7.15),

lim
n↑∞ sup

ω∈�n

∣∣(1 − λ
(n)
1

)n − 1
∣∣ = 0,(7.23)

while, due to (7.16),∣∣∣∣(ψ(n)
1 ,1Dn

)
ψ

(n)
1 (0) −

(
h

‖h‖ ,1Dn

)
h(0)

‖h‖
∣∣∣∣ ≤ p(lnn)n−δ ‖1Dn‖

‖h‖ h(0).

Applying Lemma 9 completes the proof.
To prove (7.22), we observe that, due to (7.1) and (7.5),

‖1Dn‖2 ≤ c ln2 n · exp
{−V

(
m(n))} ≤ c′ ln2 n · n1/δ′

.(7.24)

The above estimate together with (7.17) implies (7.22).
Finally, note that due to (7.20) and (7.22), it is clear that

lim sup
n↑∞

sup
�n

(
1 − λ

(n)
|An|

)n(
ψ

(n)
|An|,1Dn

)
ψ

(n)
|An|(0) = 0.

But, on the other hand, since 1 − λ|An| < 0, and all quantities vary slowly with n,(
1 − λ

(n)
|An|

)n(
ψ

(n)
|An|,1Dn

) ∼ −(
1 − λ

(n+1)
|An+1|

)n+1(
ψ

(n+1)
|An+1|,1Dn+1

)
,

implying that

lim sup
n↑∞

sup
�n

(
1 − λ

(n)
|An|

)n(
ψ

(n)
|An|,1Dn

) = − lim inf
n↑∞ inf

�n

(
1 − λ

(n)
|An|

)n(
ψ

(n)
|An|,1Dn

)
,

which yields (7.21).

LEMMA 9.

lim
n↑∞ sup

�n

|h(0) − 1| = 0,(7.25)

lim
n↑∞ sup

�n

∣∣∣∣(h,1Dn)

‖h‖2 − 1
∣∣∣∣ = 0,(7.26)

lim
n↑∞ sup

�n

∣∣∣∣‖1Dn‖
‖h‖ − 1

∣∣∣∣ = 0.(7.27)
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PROOF. Let us suppose that the event �n is verified. In order to prove
(7.25), suppose, for example, that a(n) ≤ 0 < m(n), thus implying that 1 − h(0) =
ha(n),m(n)(0). Therefore, due to (3.10) and assumptions (7.1) and (7.4),

1 − h(0) ≤ c ln2 n · exp
{

max
[0,m(n)−1]

V − max
[a(n),m(n)−1]

V

}
≤ c ln2 n · n−δ,

thus implying (7.25).
We prove now (7.26). The proof of (7.27) is similar and we will omit it. Let

us first bound 1 − h(x) for x ∈ Dn. Suppose, for example, that x < m(n), thus
implying 1 − h(x) = ha(n),m(n)(x). Due to (3.10), (7.1) and (7.6),

1 − h(x) ≤ c ln2 n · exp
{

max
[x,m(n)−1]

V − max
[a(n),m(n)−1]

V

}
≤ c ln2 n · n−δ.(7.28)

In particular,∣∣∣∣∣
∑

x∈Dn

µ(x)h2(x) − ∑
x∈Dn

µ(x)h(x)

∣∣∣∣∣ ≤ c ln2 n · n−δ
∑

x∈Dn

µ(x)h(x).(7.29)

Let us write

(h,1Dn)

‖h‖2 = W1(n)

W2(n)
· W2(n)

W3(n)
,

where

W1(n) ≡ ∑
x∈Dn

µ(x)

µ(m(n))
h(x),

W2(n) ≡ ∑
x∈Dn

µ(x)

µ(m(n))
h(x)2,

W3(n) ≡ ∑
x∈An

µ(x)

µ(m(n))
h(x)2.

Then, due to (7.29), limn↑∞ sup�n
|W1(n)/W2(n) − 1| = 0. Since W3(n) ≥ 1, in

order to prove that limn↑∞ sup�n
|W2(n)/W3(n) − 1| = 0, it is enough to show

lim
n↑∞ sup

�n

∑
x∈An\Dn

e−(V (x)−V (m(n))) = 0.(7.30)

To this aim, it is more convenient to work on the rescaled lattice Z/N , where N =
ln2 n, and compare V (N) with B . Let us set here m ≡ m(V (N)), m1 ≡ m1(V

(N))

and m2 ≡ m2(V
(N)). We can write∑

x∈An\Dn

e−(V (x)−V (m(n))) = ∑
x∈An/N\Dn/N

e−√
N(V (N)(x)−V (N)(m)).(7.31)
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Due to Lemma 5 applied with ε = 4εn and with [−1,1] substituted with
[−1/δ′,1/δ′], and due to the definition of �n, there exists a 1-minimum m∗ of

B̄ = (
B(x) :x ∈ [−1/δ′,1/δ′])

such that

|B(m∗) − V (m)| ≤ εn, |m − m∗| ≤ δn/2.

Let us denote m∗
1, m∗

2 the first 1-maximum of B̄ respectively on the left and on the
right of m∗. Due to Lemma 5 [see, in particular, (2.17)] and the definition of �n,

|m1 − m∗
1| ≤ δn/2, |m2 − m∗

2| ≤ δn/2.

In particular,

r.h.s. of (7.31) ≤ ∑
x∈�1∪�2

e2C1 lnNe−√
N(B(x)−B(m∗)),(7.32)

where

�1 ≡ (m∗
1 − δn/2,m∗ − δn/2] ∩ Z/N, �2 ≡ [m∗ + δn/2,m∗

2 + δn/2) ∩ Z/N.

Let us estimate the contribution in (7.32) of the addenda x ∈ �1 (the case x ∈ �2
can be treated similarly).

Due to (7.2) and Lemma 5, m∗
1, m∗

2 are 1-maxima of B . Hence, there exists
k ∈ Z such that

m∗
1 = S

(1)
k−1, m∗ = S

(1)
k , m∗

2 = S
(1)
k+1.

We can write ∑
x∈�1

e2C1 lnNe−√
N(B(x)−B(m∗)) = I1 + I2 + I3,

where Ii is given by the sum over x ∈ Ri and

R1 = (m∗
1 − δn,m

∗
1] ∩ Z/N,

R2 = (
m∗

1,m
∗ − T

(1)
k,−

]
,

R3 = (
m∗ − T

(1)
k,−,m∗ − δn

)
.

Consider the case x ∈ R1. Due to (7.8) and (7.11),

B(x) − B(m∗) = (
B(x) − B(m∗

1)
) + (

B(m∗
1) − B(m∗)

)
≥ −1/2 + 1 + C4εn ≥ 1/2.

Since, due to (7.1), |An| ≤ cN , we get

I1 ≤ |An|e2C1 lnN−√
N/2 ≤ cN1+2C1e−√

N/2.(7.33)
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Consider the case x ∈ R2. Due to (7.8), B(x) − B(m∗) ≥ C4εn [otherwise be-
tween m∗

1 and m∗ there would be a (1 − C4εn)-minimum in contradiction with
(7.8)]. Hence,

I2 ≤ |An|N2C1e−C4εn

√
N ≤ cN1+2C1−C1C4 .(7.34)

Consider the case x ∈ R3. Due to (7.10), B(x) − B(m∗) ≥ C4εn. Hence,

I3 ≤ |An|N2C1e−C4εn

√
N ≤ cN1+2C1−C1C4 .(7.35)

By collecting together (7.33), (7.34) and (7.35), we get∑
x∈�1

e2C1 lnNe−√
N(B(x)−B(m∗)) ≤ cN1+2C1e−√

N/2 + cN1+2C1−C1C4 .

Since, by assumption, 1 + 2C1 − C1C4, the r.h.s. goes to 0 as n goes to ∞. �

Let us conclude this section with some remarks, and the proof of Theorem 4. We
will throughout the remainder of this discussion assume without further mention-
ing that the random environment is such that the hypothesis of our main statements
are verified for all Dirichlet operators we will consider. The reader can check that
this holds with high probability (see also the proof of Theorem 4 where the tech-
nical steps are discussed in more detail).

First, we note that the choice of the set An in the lower bound (7.14), although
probabilistically justified by the fact that the process will not have left An by time
n and will not have remained in a much smaller set, either, with high probability,
seems awkward from a spectral point of view. In fact, we should obtain the same
localization result if we choose instead of An a much larger set. To see this in some
detail, let us consider any interval A ⊃ An. Obviously, we have that

Pω
0 (Xn ∈ D) ≥

|A|∑
j=1

(
1 − λ

(A)
j

)n(
ψ

(A)
j ,1D

)
ψ

(A)
j (0) ∀D ⊂ A,(7.36)

where λ
(A)
j , ψ

(A)
j are the eigenvalues and eigenfunctions of L(A), with λ

(A)
j in-

creasingly ordered.
Let us understand what we can say about the spectrum of L(A). Let us write

λ
(n)
1 for the principal eigenvalue of L(An). We know that λ

(A)
1 ≤ λ

(n)
1 . Let k be the

number of eigenvalues of L(A) which are smaller or equal than λ
(n)
1 . If k = 1, then

the analysis above remains essentially unchanged. In what follows we suppose
k ≥ 2.

From our analysis of eigenvalues, this means that the potential V (1) [recall the
definition (1.9)] restricted to A has k O(lnn)-minima (we always assume n large).
Let us denote these minima by x1, . . . , xk , labeled as in Section 5 to correspond
to increasing eigenvalues of L(A). Clearly, one of these minima is m(n), defined
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as in Theorem 3, say, xl = m(n). Let us denote by Bi small neighborhoods of the
minima xi .

Using the same arguments as before, we see that we get, up to terms tending to
zero with n,

Pω
0 (Xn ∈ Bi) ≥

k∑
j=1

(
ψ

(A)
j ,1Bi

)
ψ

(A)
j (0).(7.37)

Now we know that the left-hand side of the equation equals one, if i = l, and zero,
otherwise. On the other hand, we also know, from our estimate on the eigenfunc-
tions, that

(
ψ

(A)
j ,1Bj

)
ψ

(A)
j (0) ∼ µ(Bj )

‖hxj ,S∗
j−1

‖2
2

hxj ,S∗
j−1

(0) ∼ hxj ,S∗
j−1

(0),(7.38)

where S∗
j−1 = {x1, x2, . . . , xj−1} ∪ (Z \ A). Note that the right-hand side is essen-

tially one, if “0 is in the valley of xj ,” where we call the valley of xj the interval
between the two highest maxima to the right and to the left of xj one needs to
cross to reach S∗

j−1 from xj .
Let us now look at the probability to be in Bl . Up to terms tending to zero with n,

we can write this as

Pω
0 (Xn ∈ Bl) ≥ (

ψ
(A)
l ,1Bl

)
ψ

(A)
l (0)

+ ∑
j :µ(xj )>µ(xl)

(
ψ

(A)
j ,1Bl

)
ψ

(A)
j (0)(7.39)

+ ∑
j :µ(xj )<µ(xl)

(
ψ

(A)
j ,1Bl

)
ψ

(A)
j (0).

We already know that the first term equals one, as does the left-hand side. Now for
the first sum we get an easy asymptotic bound using again our estimates for the
eigenfunctions, namely (up to terms tending to zero with n),

∑
j :µ(xj )>µ(xl)

(
ψ

(A)
j ,1Bl

)
ψ

(A)
j (0) ≤ ∑

j :µ(xj )>µ(xl)

µ(Bl)

µ(Bj )
,(7.40)

which will tend to zero with n (in the good subspace of environments). To deal
with the second sum, we need to be more careful. First, note that xl is the mini-
mum of the lnn-valley that contains 0; thus, it is not possible that any of the valleys
of the xj with V (xj ) > V (xl) contains the origin. Using these facts, and the pre-
cise representation of the eigenfunction (6.17), pointwise estimates on the hλ (see
Lemma 4.3 of [3]), and the usual estimates on the equilibrium potential, one may
show that indeed all terms in this sum also tend to zero with n. We leave the details
for the interested reader.
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A more interesting observation ensues when regarding a neighborhood Bi with
µ(xi) > µ(xl) and such that 0 is contained in the valley of xi . Then we know that,
up to terms tending to zero with n,

o(1) = Pω
0 (Xn ∈ Bi)

≥ (
ψ

(A)
i ,1Bi

)
ψ

(A)
i (0)

(7.41)
+ ∑

j :µ(xj )>µ(xi)

(
ψ

(A)
j ,1Bi

)
ψ

(A)
j (0)

+ ∑
j :µ(xj )<µ(xi)

(
ψ

(A)
j ,1Bi

)
ψ

(A)
j (0).

Now the first term in the r.h.s. is close to one, while the first sum, by the same
estimates as before, tends to zero. Thus, we can conclude that∑

j :µ(xj )<µ(xi)

(
ψ

(A)
j ,1Bi

)
ψ

(A)
j (0) ∼ −1.(7.42)

We see that the small negative parts of the eigenfunctions play a crucial role here
and cannot be neglected! Deriving (7.42) directly from our estimates on the eigen-
functions is not possible.

PROOF OF THEOREM 4. Let us now exploit these observations to prove The-
orem 4. To do this, we recall the construction of the sequence of boxes Ank

[recall
the definition (7.13) of An and Dn]: start with An0 , n0 large. Then increase n to n1
such that, for the first time, m(n1) �= m(n0), and so on.

Let

λ
(nk)
1 < λ

(nk)
2 < · · · < λ

(nk)|Ank
|−1 < λ

(nk)|Ank
|

be the eigenvalues of the generator L(Ank
) and call ψ

(nk)
j the eigenvector associ-

ated to λ
(nk)
j . Due to Lemma 1,

1 − λ
(nk)
i = −(

1 − λ
(nk)|Ank

|−i+1

) ∀1 ≤ i ≤ |Ank
|,(7.43)

and we can assume that ψ
(nk)
j and ψ

(nk)|Ank
|−i+1 coincide on even sites and are oppo-

site on odd sites.
Given positive constants δ, δ′, β , we define �n = �n(δ, δ

′, β) ⊂ � as in the
proof of Theorem 3 [see (7.12)] with the following additional assumption: let h1 >

h2 > h3 be the minimal values such that∣∣M−
hi

(
V (ln2 nk)

) ∩ (m1,m2)
∣∣ = i, 1 ≤ i ≤ 3

(it is understood that we exclude degenerate cases), then we require that

h1 ≥ h2 + δ, h2 ≥ h3 + δ.(7.44)
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Given α > 0, we fix δ, δ′, β > 0 such that P(�n) ≥ 1 − α. Note that, due to our
choice of �n, all results obtained in the proof of Theorem 3 remain valid.

For each Tk ∈ N, we can write

P ω
0 (XTk

∈ Dnk
) = Ik + Ek,(7.45)

where

Ik =
|Ank

|∑
j=1

Ik,j , Ik,j = (
1 − λ

(nk)
j

)Tk
(
ψ

(nk)
j ,1Dnk

)
ψ

(nk)
j (0),(7.46)

and the error term Ek is bounded by

0 ≤ Ek ≤ P ω
0 (τAc

nk
< Tk).(7.47)

LEMMA 10. Assume that Tkλ
(nk)
1 = o(1). Then

P ω
0 (τAc

nk
< Tk) = o(1),(7.48)

where o(1) is uniform for all ω ∈ �nk
.

PROOF. The proof relies on the representation that is completely analogous to
the second line in (7.14):

P ω
0 (τAc

nk
≥ Tk) = 1

µ(0)

(
10,P(Ank

)Tk−11Ank

)
.(7.49)

To show that this quantity goes to one [and, hence, the expression in equa-
tion (7.48) goes to zero], we proceed exactly as in the proof of Theorem 3. It
is clear that we have succeeded if we establish the analogues of relations (7.20),
(7.21) and (7.22), with Dn replaced by Ank

and n replaced by nk , with exception
of the exponent of (1 − λ

(nk)
j ), which becomes Tk − 1.

There is, however, nothing to be done: the first two relations follow without
change, and for the last it is enough to notice that the bound on ‖1Ank

‖ is essentially
equal to that of ‖1Dnk

‖, since Dnk
is a neighborhood of the deepest minimum on

Ank
. The assertion of the proof is thus obvious. �

Due to (7.23) and (7.43), the limits (7.20) and (7.22) imply

lim
k↑∞ sup

ω∈�nk

∣∣(ψ(nk)
1 ,1Dnk

)
ψ

(nk)
1 (0) − 1

∣∣ = 0,(7.50)

lim
k↑∞ sup

ω∈�nk

∣∣(ψ(nk)|Ank
|,1Dnk

)
ψ

(nk)|Ank
|(0)

∣∣ = 0.(7.51)

Moreover, as done in (7.19) and (7.24), if ω ∈ �nk
, we can always bound

|Ank
|−2∑

j=3

Ik,j ≤ ∣∣1 − λ
(nk)
3

∣∣Tnk ‖1Dnk
‖ ≤ c

∣∣1 − λ
(nk)
3

∣∣Tk lnnk · n1/(2δ)
k .(7.52)
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We consider below two cases: n
h3
k � Tk � n

h2
k and Tk = t/λ

(nk)
2 . Note that,

since λ
(nk)
1 ∼ n

−h1
k , in both cases Tkλ

(nk)
1 = o(1).

All our estimates below have to be considered uniform on ω ∈ �nk
.

Case n
h3
k � Tk � n

h2
k . Take, for example, Tk = n

(h2+h3)/2
k .

Then [see (1.28)]

(
1 − λ

(nk)
i

)Tk ∼ e−Tkλ
(nk)

i ∼ e−Tk/n
hi
k , i = 1,2,3.(7.53)

In particular, for i = 1,2, (1 − λ
(nk)
i )Tk = 1 + o(1). Due to (7.50) and (7.51),

Ik,1 = 1 + o(1) and Ik,|Ank
| = o(1). Moreover, (7.53) and (7.52) imply that∑|Ank

|−2
j=3 Ik,j = o(1). Hence,

Ik = 1 + Ik,2 + Ik,|Ank
|−1 + o(1).

By Lemma 10, also the error term Ek goes to 0 uniformly in ω ∈ �nk
. On the

other hand, due to Theorem 3 and the geometry of V over Ank
,

P ω
0 (XTk

∈ Dnk
) = o(1).

(7.45) and the above observations imply that

Ik,2 + Ik,|Ank
|−1 = −1 + o(1).

Reasoning as in the proof of (7.21), from the above expression we derive that
Ik,2 = −1 + o(1), Ik,|Ank

|−1 = o(1). Since 1 − λ
(nk)
2 = 1 + o(1) and due to (7.43),

the previous identities imply that(
ψ

(nk)
2 ,1Dnk

)
ψ

(nk)
2 (0) = 1 + o(1),(7.54)

(
ψ

(nk)|Ank
|−1,1Dnk

)
ψ

(nk)|Ank
|−1(0) = o(1).(7.55)

Case Tk = t/λ
(nk)
2 . In this case

(
1 − λ

(nk)
i

)Tk




= 1 + o(1), if i = 1,
= e−t + o(1), if i = 2,
≤ exp(−ctn

h2
k /n

h3
k ), if i = 3.

(7.56)

By means of (7.56) with i = 1, (7.50) and (7.51), we get that Ik,1 = 1 + o(1),
Ik,|Ank

| = o(1). By means of (7.56) with i = 2, (7.54) and (7.55), we get that Ik,2 =
e−t + o(1), Ik,|Ank

|−1 = o(1). Moreover, (7.56) with i = 3 and (7.52) imply that∑|Ank
|−2

j=3 Ik,j = o(1). Hence,

Ik = 1 − e−t + o(1).

The assertion now follows from (7.45) and the fact that Ik = 1 − e−t + o(1),
Ek = o(1). �
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Note that this observation suggests the following trap model caricature of
Sinai’s random walk: Take the sequence of values λ

(nk)
2 ≡ �k ; this sequence

is fully determined by the random potential. Now consider the continuous time
Markov chain on the positive integers that jumps from site k to site k + 1 with
rate �k .

APPENDIX A: RG-ALGORITHM LABELING THE h-MINIMA

To compare our spectral results with [15], we show in this Appendix that the
renormalization group algorithm of [10], Section II, leads to the labeling M−

h (γ ) =
{x1, x2, . . . , xq}, fulfilling (1.16), whenever γ ∈ C([−1,1]) satisfies |M−

h (γ )| =
q ≥ 1 and ∣∣|γ (y) − γ (x)| − |γ (y′) − γ (x′)|∣∣ ≥ δ
(A.1)

∀(x, y) �= (x′, y′) ∈ M−
h (γ ) × M+

h (γ ).

It is simple to check that (A.1) implies (1.15). Let us first describe the RG-
algorithm in terms of h-extrema. To this aim, we label the points of M−

h (γ ) ∪
M+

h (γ ) as

z
(1)
1 < z

(1)
2 < · · · < z

(1)
2q+1.

As discussed in Lemma 2, z
(1)
j is a h-maximum if j is odd, otherwise it is a

h-minimum. We introduce a coarse-grained potential V(1) on [−1,1] by setting

V(1)(x) =
{−∞, if x ∈ {−1,1} \ {

z
(1)
1 , z

(1)
2q+1

}
,

V (x), if x = z
(1)
i , 1 ≤ i ≤ 2q + 1,

and by extending V(1) to all [−1,1] by linear interpolation (see Figure 5). Note
that V(1) ≡ −∞ on [−1,1] \ [z(1)

1 , z
(1)
2q+1].

We now define inductively by decimation of the less deep valley new poten-
tials V(2), V(3), . . . ,V(q) on [−1,1] satisfying the following property: For each

FIG. 5. Potential V(1), q = 2.
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2 ≤ i ≤ q , there exist −1 ≤ ai < bi ≤ 1 such that V(i) ≡ −∞ on [−1,1] \ [ai, bi]
and V(i) is piecewise-linear on [ai, bi], with ai, bi local maxima and having
q − i + 1 local minima in [ai, bi]. To this aim, suppose V(i) to be defined for
some 1 ≤ i ≤ q − 1, fulfilling the above properties, and write

ai = z
(i)
1 < z

(i)
2 < · · · < z

(i)
2(q−i+1)+1 = bi

for its h-extrema on [ai, bi]. Let us consider the bond [z(i)
k , z

(i)
k+1], k = k(i), with

the smallest variation of V(i):∣∣V(i)(z(i)
k

) − V(i)(z(i)
k+1

)∣∣
(A.2)

= min
{∣∣V(i)(z(i)

s

) − V(i)(z(i)
s+1

)∣∣ : 1 ≤ s ≤ 2(q − i + 1)
}
.

Note that the index k is uniquely defined due to (A.1).
Let us define Di ≡ {z(i)

1 , z
(i)
2 , . . . , z

(i)
2(q−i+1)+1} and Di+1 ≡ Di \ {z(i)

k , z
(i)
k+1}.

Then V(i+1) is defined by setting

V(i+1)(x) =
{−∞, if x ∈ {−1,1} \ Di+1,

V (x), if x ∈ Di+1,

and by extending V(i+1) to all [−1,1] by linear interpolation. In Figure 6 we con-
sider the case 1 < k < 2(q − i + 1) + 1.

Finally, we denote by Tj the r.h.s. of (A.2) and by yi the local minimum of V (i)

in {z(i)
k , z

(i)
k+1}. Since for a given curve γ they depend on h, we will sometimes

write yi(h), Ti(h) in order to underline this dependence. We can now state the
relation between the above RG-construction and the labeling satisfying (1.16 ):

PROPOSITION 7. Let h > 0 and γ ∈ C([−1,1]) satisfying |M−
h (γ )| = q ≥

1 and (A.1). Moreover, let {x1, x2, . . . , xq} be the labeling of M−
h (γ ) satisfy-

ing (1.16) and let y1, y2, . . . , yq , T1, T2, . . . , Tq defined as in the above RG-
construction. Then

xk = yq−k+1, γ (z∗(xk, Sh,k−1)) − γ (xk) = Tq−k+1 ∀1 ≤ k ≤ q,

where Sh,k−1(γ ) = {x1, x2, . . . , xk−1} ∪ {−1,1}.

FIG. 6. Decimation of the less deep valley.
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PROOF. We prove the proposition by induction on q . It is simple to check that
the assertion holds for all h > 0 if q = 1. Assume that it is valid for all h > 0 if
q = q̄ −1, for some q̄ ≥ 2. We fix γ ∈ C([−1,1]) and h > 0 such that M−

h (γ ) = q̄ .
Let y1(h), . . . , yq̄(h), T1(h), . . . , Tq̄(h) be defined by the RG-procedure described
above. We observe that M−

h′ (γ ) = M−
h (γ ) \ {y1}, where h′ ≡ T1(h) + δ and

yk(h
′) = yk+1(h) for all 1 ≤ k ≤ q̄ − 1. Setting

Xj ≡ yq̄−j (h
′) = yq̄−j+1(h),

Sh′,k = {X1,X2, . . . ,Xk} ∪ {−1,1} ∀1 ≤ j ≤ q̄ − 1,

by the inductive hypothesis, we obtain that

γ (z∗(Xk, Sh′,k−1)) − γ (Xk)

≥ max
q̄−1≥j>k

{γ (z∗(Xj , Sh′,k−1)) − γ (Xj )} + δ(A.3)

∀1 ≤ k ≤ q̄ − 2

and

γ (z∗(Xk, Sh′,k−1)) − γ (Xk) = Tq̄−k(h
′) ∀1 ≤ k ≤ q̄ − 1.(A.4)

Let us now define x1 ≡ X1, . . . , xq̄−1 ≡ Xq̄−1, xq̄ ≡ y1. We claim that {x1, . . . , xq̄}
satisfies (1.16). In fact, by observing that Sh,k = Sh′,k for 1 ≤ k ≤ q̄ − 1, due to
(A.3), we only need to prove

γ (z∗(xk, Sh,k−1)) − γ (xk) ≥ γ (z∗(y1, Sh,k−1)) − γ (y1) + δ ∀1 ≤ k ≤ q̄ − 1.

The above inequalities follow easily from (A.1) and the fact that (1.15) implies

γ (z∗(xk, Sh,k−1)) − γ (xk) = max
x∈[−1,1]\Sh,k−1

γ (z∗(x, Sh,k−1)) − γ (x)(A.5)

∀k : 1 ≤ k ≤ q − 1.

To conclude the proof, we need to show that

γ (z∗(xk, Sh,k−1)) − γ (xk) = Tq̄−k+1(h) ∀1 ≤ k ≤ q̄.

Since Tq̄−k+1(h) = Tq̄−k(h
′) for all 1 ≤ k < q̄ and due to (A.4), one only needs to

check the trivial identity

γ (z∗(y1, {x1, . . . , xq̄−1})) − γ (y1) = T1(h). �

APPENDIX B: PROOF OF LEMMA 4

Recall the definition of the random variable X(h) given in (2.8).
Let us first prove (2.9). Due to Proposition 1 and (2.7), we obtain

PB

(|Eh(γ )| ≥ 4
) ≥ PB

(|E1(γ ) ∩ [−h−2, h−2]| ≥ 4
)

(B.1)
≥ PB

(
S

(1)
1 ≤ 1/h2)

P
(
X(1) ≤ 1/(3h2)

)3
.
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By (2.7), the Schwarz inequality and since E(X(1)) = 1/σ 2, E((X(1))2) = 1/2σ 2,
we obtain that, for all t ≥ 0,

PB

(
S

(1)
1 ≤ t

) ≥ 1 − E
(
X(1);X(1) > t

)/
E

(
X(1))

≥ 1 − E
((

X(1))2)1/2
P

(
X(1) > t

)1/2/
E

(
X(1))(B.2)

= 1 − σ√
2
P

(
X(1) > t

)1/2
.

Since X(1) has density σ 2f (σ 2x)dx with f (x) as in (2.6), for each α > 0, there
exists c(σ,α) > 0 such that P(X(1) ≥ t) ≤ c(σ,α)t−α for all t > 0. This allows
to bound from below PB(S

(1)
1 ≤ 1/h2) [due to (B.2)] and PB(X(1) ≤ 1/(3h2)).

These lower bounds together with (B.1) imply (2.9).
In order to prove (2.10), we observe that Proposition 1 implies

PB

(
γ : |Eh(γ ) ∩ [−1,1]| ≥ n

) ≤ P
(
Z(h)

n ≤ 2
)
,(B.3)

where

Z(h)
n ≡ X

(h)
1 + X

(h)
2 + · · · + X(h)

n

and X
(h)
1 ,X

(h)
2 , . . . ,X

(h)
n are i.i.d. random variables having Laplace transform

given by the r.h.s. of (2.8). In particular, for all t > 0,

P
(
Z(h)

n ≤ t
) ≤ eE

(
exp

{−Z(h)
n /t

}) = e/ coshn

(√
2h√
tσ

)
≤ e

(
1 + h2

tσ 2

)−n

,(B.4)

where in the last inequality we have used the bound coshx ≥ 1 + x2/2. By taking
t = 2, we get (2.10).

To prove (2.11), we define the increasing sequence S̃
(h)
1 < S̃

(h)
2 < · · · as the

sequence of h-extrema of γ not larger than −1 (note that such a sequence is well
defined PB -almost surely). Then, the l.h.s. of (2.11) can be bounded by

∞∑
n=2

PB

(|Eh(γ ) ∩ [−1,1]| = n,∃j : 1 ≤ j ≤ n − 1,

(B.5)
s.t.

∣∣γ (
S̃

(h)
j

) − γ
(
S̃

(h)
j+1

)∣∣ < h + δ
)
.

By Proposition 1, for all n ∈ Z, |γ (S
(h)
n )− γ (S

(h)
n+1)|−h is an exponential variable

with mean h and, therefore,

PB

(∣∣γ (
S(h)

n

) − γ
(
S

(h)
n+1

)∣∣ < h + δ
) ≤ 1 − e−δ/h.

Therefore, due to the bound (B.5) and (2.10),

l.h.s. of (2.11) ≤ (1 − e−δ/h)

∞∑
n=2

e

(
1 + h2

2σ 2

)−n

n.
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Since for all a > 1
∑∞

n=1 na−n = a(a − 1)−2, we get (2.11).
To prove (2.12), given γ ∈ C(R) and a1 < a2 < · · · < an, we say that condition

C((a1, a2, . . . , an), γ, δ) is fulfilled if∣∣|γ (ai) − γ (aj )| − |γ (ai′) − γ (aj ′)|∣∣ ≥ δ

for all (i, j) �= (i ′, j ′) with i, i′ odd, j, j ′ even and i < j , i ′ < j ′. Due to Proposi-

tion 1 and since (Bth2/h, t ∈ R)
law= (Bt , t ∈ R),

l.h.s. of (2.12) ≤
∞∑

n=1

PB

(|Eh(γ ) ∩ [−1,1]| = n,C
((

S̃
(h)
1 , S̃

(h)
2 , . . . , S̃(h)

n

)
, γ, δ

))

≤
∞∑

n=1

PB

(|Eh(γ ) ∩ [−1,1]| = n
)

×
(n)∑

a,b,a′,b′
P

(∣∣|�(a, b)| − |�(a′, b′)|∣∣ ≤ δ/h
)
,

where the summation
∑(n)

a,b,a′,b′ is over all odd integers a, b, a′, b′ with 1 ≤ a ≤
b ≤ n, 1 ≤ a′ ≤ b′ ≤ n and, given a ≤ b odd with 1 ≤ a ≤ b ≤ n,

�(a, b) ≡ (Ya − Ya+1) + (Ya+2 − Ya+3) + · · · + (Yb−2 − Yb−1) + Yb + 1,(B.6)

where Yz, z ∈ Z, are independent exponential variables with mean 1.
We claim that there exists a constant c0 > 0, independent of all other parameters,

such that

P
(∣∣|�(a, b)| − |�(a′, b′)|∣∣ ≤ δ/h

) ≤ c0δ/h(B.7)

for all a, b, a′, b′ as above. This, together with (B.3) and (B.4), implies

l.h.s. of (2.12) ≤ ec0δ

h

∞∑
n=1

n4
(

1 + h2

2σ 2

)−n

.

Since
∑∞

n=1 n4a−n ≤ ca4/(a − 1)5 for all a > 1, the above bound implies (2.12).
Let us prove (B.7). Since E(exp{itX}) = 1/(1 − it) if X is an exponen-

tial variable with mean 1, we obtain that the characteristic function φa,b(t) ≡
E(exp{it�(a, b)}) satisfies

|φa,b(t)| ≤ (1 + t2)−(b−a)/2|1 − it |−1.

In particular, by the inverse formula of the Fourier transform, if a < b or due the
explicit expression if a = b, we get that 0 ≤ fa,b(x) ≤ c′ ∀x ∈ R, where fa,b is the
density function of �(a, b) and the constant c′ is independent of all parameters.
Let us first suppose that a ≤ b < a′ ≤ b′ and bound

P
(∣∣|�(a, b)| − |�(a′, b′)|∣∣ ≤ δ/h

)
≤ P

(|�(a, b) − �(a′, b′)| ≤ δ/h
)

(B.8)

+ P
(|�(a, b) + �(a′, b′)| ≤ δ/h

)
.
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Since �(a, b),�(a′b′) are independent,

P
(|�(a, b) − �(a′, b′)| ≤ δ/h

)
=

∫
R

dx′ fa′,b′(x′)
∫

R

dx fa,b(x)I|x−x′|≤δ/h ≤ 2c′δ/h.

Similarly, one can bound the last member in (B.8) by 2c′δ/h. It is easy to adapt the
above argument when the sets [a, b] ∩ Z, [a′, b′] ∩ Z have nonempty intersection
in order to get a similar bound for the l.h.s. of (B.8), completing the proof of (B.7).

Let us prove (2.13) by using Lemma 3. Note that this lemma gives the statistics
of the h-slopes that are not crossing a given point, and therefore cannot be applied
directly to the h-slope crossing −1 or 1. In order to avoid this problem, we look
to the behavior of the h-slopes in a larger interval [−L − 1,L + 1] requiring that
the first h-extremum in such an interval is smaller than −1 and the last one is
larger than 1 (in this way, all the h-slopes covering part of the interval [−1,1]
cannot cross the boundary {−L − 1,L + 1}). For any α > 0, the probability that
the previous condition is not satisfied can be bounded from above by

2PB

(
S

(h)
1 > L

) = 2PB

(
S

(1)
1 > Lh−2) ≤ c(α,σ )L−αh2α

due to (B.2) and the subsequent discussion there.
Let us define Eh,β,ε as the event that ∃n ∈ Z with S

(h)
n , S

(h)
n+1 ∈ [−L − 1,L + 1]

and (
inf

t∈(β,T
(h)
n,+]

∣∣B
S

(h)
n +t

− B
S

(h)
n

∣∣) ∧
(

inf
t∈(β,T

(h)
n+1,−]

∣∣B
S

(h)
n+1−t

− B
S

(h)
n+1

∣∣) < ε.

Then, due to Lemma 3,

PB(Dh,β,ε) ≤ PB(Eh,β,ε) + c(α,σ )L−αh2α

≤ cn

∞∑
n=2

PB

(
γ : |Eh(γ ) ∩ [−L − 1,L + 1]| = n

)
ε/

√
β(B.9)

+ c(α,σ )L−αh2α.

By (2.3) and (2.10),

PB

(
γ : |Eh(γ ) ∩ [−L − 1,L + 1]| = n

)
= PB

(
γ :

∣∣Eh/
√

L+1(γ ) ∩ [−1,1]∣∣ = n
)

≤ c

(
1 + h2

2σ 2(L + 1)

)−n

.

Since for all a > 1,
∑∞

n=1 na−n = a/(a − 1)2, (2.13) follows from the above esti-
mates by taking α ≡ 2, h2/L = ε1/4/β1/8.
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To prove (2.14), we observe that 1 ≤ |M−
h (γ ∗)| ≤ Q if 4 ≤ |Eh(γ ) ∩ [−1,1]| ≤

n. Due to (2.9) and (2.10), by choosing h small enough, the last event is veri-
fied with probability at least 1 − α/5. Let us assume that M−

h (γ ∗) �= ∅. In order
to verify conditions (1.15) and (1.16), we have to take in consideration that the
smallest and the largest elements of M+

h (γ ∗) could not be h-maxima of γ . By
choosing h′ small enough, we have that M+

h (γ ∗) ⊂ M+
h′ (γ ) with probability at

least 1 − α/5. In this case, condition (1.16) is implied by the event (Ch′,δ)c. Due
to (2.12), PB(Ch′,δ) < α/5 if δ is small enough. Similarly, due to (2.11), we can as-
sume that the event Bh,δ has probability less than α/5 if δ is small enough. At this
point, in order to verify condition (1.15), it remains to observe that if δ is small
enough, then with probability at least 1 − α/5, one has γ (w1) − γ (u1) > h + δ

and γ (wq+1) − γ (uq) > h + δ, where w1,wq+1, u1, uq are as in Lemma 2 with γ

replaced by γ ∗.

APPENDIX C: STURM OSCILLATION THEORY

As discussed in [19], the qualitative theory of second order Sturm–Liouville
equations

d

dt

(
p(t)

du

dt
(t)

)
+ q(t)u(t) = 0, p ∈ C1, q ∈ C0,p > 0

can be generalized to difference equations, that is, equations of the form Hu = 0
with H a Jacobian matrix, namely, H = (Hi,j )i,j∈I is a symmetric matrix indexed
on a (possibly infinite) interval I ⊂ Z such that Hi,j = 0 whenever |i − j | > 1. In
what follows we derive from [19] some results mainly related to Sturm oscillation
theory for the Dirichlet operator L(D), D ≡ {a, a + 1, . . . , b} ⊂ Z. To this aim,
we introduce the following notation: given u ∈ R

D , the continuous function û is
defined on [a, b] by setting û(x) ≡ u(x) for all x ∈ [a, b] ∩ Z and by extending û

on [a, b] by linear interpolation.
Let us first observe that, due to a simple iterative procedure, the system((

L(D) − λ
)
u
)
(x) = 0 ∀x ∈ D \ {b},

uniquely determines u ∈ R
D when given the value u(a) [in particular, the eigen-

values of L(D) are all simple] and each eigenvector cannot have two consecutive
zeros and cannot vanish on a or b. A deeper insight of the qualitative behavior of
the eigenvectors is given by the following result:

PROPOSITION 8 (Sturm oscillation theorem). Let λ1 < λ2 < · · · < λr be the
eigenvalues of L(D), where D ≡ {a, a + 1, . . . , b}, r = b − a + 1. For each 1 ≤
i ≤ r , let f (i) be an eigenvector of L(D) with eigenvalue λi . Then the function f̂ (i)

has i − 1 zeros in [a, b].
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PROOF. Without loss of generality, we assume that a = 1 < b = r . Let
us consider the matrix H = (Hi,j )i,j∈D defined as Hi,j ≡ (µ(i)/µ(j))1/2

Li,j .
Due to (1.12), H is a Jacobian matrix. Moreover, since H = A−1

L(D)A where
Ai,j ≡ δi,jµ(j)−1/2, f ∈ R

D is an eigenvector of H with eigenvalue λ iff Af is
an eigenvector of L(D) with eigenvalue λ.

Given λ ∈ R, let {uj (λ)}j∈D be the unique solution of the system


∑
j∈D

Hi,juj (λ) = λui(λ) ∀1 ≤ i ≤ r − 1,

u1(λ) = 1.

By solving the above equations iteratively, one easily checks that uj (λ) is a poly-
nomial of degree j − 1 with leading term (a1a2 · · ·aj−1)

−1λj−1 for all 1 ≤ j ≤ r ,
where ai ≡ Hi,i+1 < 0 for all 1 ≤ i ≤ r − 1. Let us introduce the monomic poly-
nomials

Pi(λ) ≡



1, if i = 0,
(a1a2 · · ·ai)ui+1(λ), if 1 ≤ i < r ,
det(λI − H), if i = r ,

and define the function ỹλ(x) on [0, r] by linear interpolation of the values ỹλ(i) ≡
(−1)iPi(λ), i ∈ [0, r]∩Z. Then, as stated after Proposition 2.4 in [19], the number
of eigenvalues of H below λ equals the number of zeros of ỹλ on [0, r).

If λ = λk for some 1 ≤ k ≤ r , then {uj (λ)}j∈D is the unique eigenvector
of H with eigenvalue λ such that u1(λ) = 1. Moreover, (−1)isgn(Pi(λ)) =
sgn(ui+1(λ)) for all 0 ≤ i ≤ r −1 since a1, . . . , ar−1 are negative, while Pr(λ) = 0
since λ is an eigenvalue of H . In conclusion, the number of zeros of ỹλ on [0, r)

equals the number of zeros of the function û on [1, r] defined by linear interpola-
tion from the values û(i) ≡ ui(λ), i ∈ [1, r] ∩ Z, which trivially equals the number
of zeros of f̂ (k) on [1, r]. �

The above proposition and the observation that any eigenvector of L(D) cannot
have two consecutive zeros easily imply the following result.

COROLLARY 2. Let λ1 < λ2 < · · · < λr be the eigenvalues of L(D), where
D ≡ {a, a +1, . . . , b}, r = b−a +1. Given 1 ≤ i ≤ r , let f (i) be an eigenvector of
L(D) with eigenvalue λi . Then f (1) is of constant sign on D while, for each index
i with 2 ≤ i ≤ r , there exist integer numbers

a ≤ y1 < y2 < · · · < yi−1 < b

such that f (i) is alternately nonnegative or negative on the i intervals [a, y1] ∩ Z,
[y1 + 1, y2] ∩ Z, [y2 + 1, y3] ∩ Z, . . . , [yi−1 + 1, b] ∩ Z.

A simple application of the above corollary is the following:



252 A. BOVIER AND A. FAGGIONATO

COROLLARY 3. Let A,B be finite subsets of Z with A ⊂ B and A �= B and let
λA,λB be respectively the principal eigenvalue of L(A) and L(B). Then λB < λA.

PROOF. Let fA ∈ R
A be a principal eigenvector of L(A) and let f̃A ∈ R

B be
defined as f̃A ≡ IAfA. Since L(B)f̃A(x) = λAfA(x) for all x ∈ A, we get

(f̃A,L(B)f̃A)L2(B,µ) = λA(f̃A, f̃A)L2(B,µ)

and, consequently, λB ≤ λA. Note that if λB = λA, then the above identity would
imply that f̃A is proportional to fB , in contradiction with Corollary 2. �

We can finally apply the Sturm oscillation theorem in order to show a spectral
interlacing property for couples of Dirichlet operators.

PROPOSITION 9. Given points a < z1 < z2 < · · · < zk < b in Z, we define
D ≡ [a, b] ∩ Z and Dk ≡ D \ {z1, . . . , zk}. If γ denotes the principle eigenvalue of
L(Dk), then

|σ(L(D)) ∩ [0, γ )| ≤ k.

PROOF. Let λ1 < λ2 < · · · < λr be the eigenvalues of L(D), where r = b −
a + 1 > k, and let f be an eigenvector of L(D) with eigenvalue λk+1. By the
above corollary, there exist integers a ≤ y1 < y2 < · · · < yk < b such that f is
alternately nonnegative or negative on the intervals [a, y1] ∩ Z, [y1 + 1, y2] ∩ Z,
[y2 + 1, y3] ∩ Z, . . . , [yk + 1, b] ∩ Z. Since these intervals are k + 1, at least one of
them has empty intersection with {z1, z2, . . . , zk}. Let us write such an interval as
[v,w]∩Z, with v,w ∈ Z, and let j ∈ {0,1, . . . , k} be such that zj < v ≤ w < zj+1,
where z0 ≡ a−1, zk+1 = b+1. Finally, let us consider the Dirichlet operator L(I ),
I ≡ (zj , zj+1) ∩ Z, and denote by β its principal eigenvalue and by g a related
eigenvector. Since L(Dk)g̃ = βg̃ where g̃ ∈ R

Dk is defined as g̃ ≡ gII , it must be
γ ≤ β . In particular, the assertion follows if we prove that β < λk+1. Due to the
variational characterization of β , in order to prove that β ≤ λk+1, it is enough to
show that

(h,L(I )h)L2(I,µ) ≤ λk+1
∑

v≤x≤w

µ(x)f 2(x) = λk+1(h,h)L2(I,µ),(C.1)

where h ∈ R
I is defined as h ≡ f I[v,w]. In fact, it is simple to check that h is not

the zero function, since in this case it should be v = w, f (v) = 0 and f (v − 1),
f (v + 1) should be both negative or both positive. All this is in contradiction
with the identity L(D)f (v) = λk+1f (v). In order to prove (C.1), we note that the
identity there follows from the definition of h. To prove the inequality, we observe
that L(I )h(x) = λk+1h(x) if v < x < w, while

L(I )h(v) = ωv

(
f (v) − f (v + 1)

) = Lf (v) − (1 − ωv)
(
f (v) − f (v − 1)

)
,
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where we set f ≡ 0 outside D. Suppose, for example, that f (v) ≥ 0, then
f (v − 1) < 0 because of the initial discussion. In particular, f (v)(f (v) − f (v −
1)) ≥ 0 and, therefore,

h(v)L(I )h(v) ≤ f (v)Lf (v) = λk+1f
2(v).

The same conclusion holds if f (v) < 0 and if we replace v with w, thus prov-
ing (C.1). Finally, we note that if β = λk+1, then, due to (C.1) and the variational
characterization of β , it should be

(h,L(I )h)L2(I,µ) = β(h,h)L2(I,µ).

It is simple to check that the above identity would imply that g = ch on I for
some non zero constant c. Since by Corollary 2 g cannot vanish, this would
imply that zj + 1 = v and zj+1 − 1 = w. Moreover, the identities L(I )g(v) =
βg(v), L(D)f (v) = λk+1f (v) = βf (v) and g = cf on I would imply that
f (v) = f (v − 1) in contradiction with the property that f (v) and f (v − 1) cannot
have the same sign. This shows that β < λk+1, thus concluding the proof. �
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