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2 Section 11. Introduction.The number partitioning problem is a classical problem from combinatorial optimization.One considers N numbers x1; : : : ; xN and one seeks to partition the set f1; : : : ; Ng intok disjoint subsets I1; : : : ; Ik, such that the sums K� � K�(I1; : : : ; Ik) � Pn2I� xn are assimilar to each other as possible. This problem can be cast into the language of mean �eldspin systems [Mer1,Mer2,BFM] by realizing that the set of partitions is equivalent to the setof Potts spin variables � : f1; : : : ; Ng ! f1; : : : ; kgN . We then de�ne the variablesK�(�) � NXn=1 xn1I�n=�; � = 1; : : : ; k: (1:1)One may introduce a \Hamiltonian" as [Mer1,BFM]HN(�) � k�1X�=1 jK�(�)�K�+1(�)j (1:2)and study the minimization problem of this Hamiltonian. In particular, if the numbers xiare considered as random variables, the problem transforms into the study of a random mean�eld spin model. For a detailed discussion we refer to the recent paper [BFM].Mertens [Mer1,Mer2] has argued that the problem is close to the so-called Random En-ergy Model (REM), i.e. that the random variables K�(�) can e�ectively be considered asindependent random variables for di�erent realizations of �, at least as far as their extremalproperties are concerned. This claim was proven rigorously in a paper by Borgs et al.[BCP]in the case k = 2 (see also [BCMP]).In this paper we extend this result to the case of arbitrary k and under the additionalconstraint that the cardinalities of the sets Ij are all equal. We formulate this result in thelanguage of multi-dimensional extremal process.Let X1; : : : ; XN be independent uniformly distributed on [0,1] random variables. (Weassume that N is always a multiple of k.) Consider the state space of con�gurations � ofN spins, where each spin takes k possible values � = (�1; : : : ; �N) 2 f1; : : : ; kgN . We willrestrict ourselves to con�gurations such that the number of spins taking each value equalsN=k, i.e. #fn : �n = �g = N=k for all � = 1; : : : ; k. Finally, we must take equivalence classesof these con�gurations: each class includes k! con�gurations obtained by a permutation ofthe values of spins 1; : : : ; k. We denote by �N the state space of these equivalence classes.Thenj�N j = � NN=k��N(1� 1=k)N=k � � � ��2N=kN=k �(k!)�1 � kN(2�N) 1�k2 k k2 (k!)�1 � S(k;N): (1:3)



Number partitioning 3Each con�guration � 2 �N corresponds to a partition of X1; : : : ; XN into k subsets ofN=k random variables, each subset being fXn : �n = �g, � = 1; : : : ; k. Then the vector~Y (�) = fY �(�)gk�1�=1 with the coordinatesY �(�) = K�(�)�K�+1(�) = NXn=1Xn(1If�n=�g � 1If�n=�+1g); � = 1; : : : ; k � 1; (1:4)measures the di�erences of the sums over the subsets. Our objective is to minimize its normas most as possible. Our main result is the following theorem.Theorem 1.1: LetV �(�) = k Nk�1 (2�N)�1k 2k�12k�2 (k!) �1k�1 2p6jY �(�)j; � = 1; : : : ; k� 1: (1:5)Then the point process on Rk�1+ X�2�N Æ(V 1(�);::: ;V k�1(�))converges weakly to the Poisson point process on Rk�1+ with intensity measure given by theLebesgue measure.Clearly, from this result we can deduce extremal properties of HN (�) = Pk�1�=1 jY �(�)jstraightforwardly.Remark: Integer partitioning problem. It is very easy to derive also from our Theo-rem 1.1 the analogous result for the integer partitioning problem. Let S1; : : : ; SN be discreterandom variables uniformly distributed on f1; 2; : : : ;M(N)g where M(N) > 1 is an integernumber depending on N . Let us de�neD�(�) = NXn=1 Sn(1If�n=�g � 1If�n=�+1g):Theorem 1.2: Assume thatM(N)!1 asN ! 1 such that limN!1(M(N))�1kN=(k�1) =0. LetW�(�) =M(N)�1k Nk�1 (2�N)�1k 2k�12k�2 (k!) �1k�1 2p6jD�(�)j; � = 1; : : : ; k� 1: (1:6)Then the point process on Rk�1+ X�2�N Æ(W 1(�);::: ;Wk�1(�))



4 Section 1converges weakly to the Poisson point process on Rk�1+ with the intensity measure which isthe Lebesgue measure.Proof. It follows from Theorem 1.1 by the same coupling argument as in the proof of Theo-rem 6.4 of [BCP].The diÆculty one is confronted with when proving Theorem 1.1 is that the standardcriteria for convergence for extremal processes to Poisson processes that go beyond the i.i.d.case either assume independence, stationarity, and some mixing conditions (see [LLR]), orexchangeability and a very strong form of asymptotic independence of the �nite dimensionalmarginals [Gal,BM]. In the situation at hand, we certainly do not have independence, orstationarity, nor do we have exchangeability. Worse, also the asymptotic factorization ofmarginals does not hold uniformly in the form required e.g. in [BM].What saves the day is, however, that the asymptotic factorization conditions hold onaverage on �N , and that one can prove a general criterion for Poisson convergence thatrequires just that.Thus the proof of Theorem 1.1 involves two steps. In Section 2 we prove an abstracttheorem that gives a criteria for the convergence of an extremal process to a Poisson process,and in Sections 3,4 we show that these are satis�ed in the problem at hand.Unfortunately, and this makes the proof seriously tedious, for certain vectors �; �0, thereappear very strong correlations between ~Y (�) and ~Y (�0) that have to be dealt with. Such aproblem did already appear in a milder form in the work of Borgs et al [BCP] for k = 2, butin the general case k > 2 the associated linear algebra problems get much more diÆcult.Remark: The unrestricted problem. These linear algebra problems prevented us tocomplete the study of the unrestricted problem (that is when the sets I1; : : : ; Ik are notnecessarily of size N=k) in the case k > 2. In Section 5 we give a conjecture for the resultsimilar to Theorem 1.1 in this case and explain the drawback in the proof that remains tobe �lled in.Remark: Dynamical search algorithms. It would be interesting to investigate rigorouslythe properties of dynamical search algorithms, resp. Glauber dynamics associated to thismodel. This problem has been studied mainly numerically in a recent paper by Junier andKurchan [JK]. They argued that the dynamics for long times should be described by ane�ective trap model, just as in the case of the Random Energy Model. This is clearly going



Number partitioning 5to be the case if the particular updating rules used in [BBG1], [BBG2] for the REM willbe employed, namely if the transition probability p(�; �0) depends only on the energy of theinitial con�guration. In the REM this choice could be partly justi�ed by the observationthat the deep traps had energies of the order �N , while all of their neighbors, typically,would have energies of the order of 1, give or take plnN . Thus, whatever the choice of thedynamics, the main obstacle to motion will always be the �rst step away from a deep well.In the number partitioning problem, the situation is quite di�erent. Let us only considerthe case k = 2. If � is one of the very deep wells, thenHN(�) = j NXi=1 xi�ij � 2�NpN: (1:7)If �j denotes the con�guration obtained from � by inverting one spin, thenHN(�j) � 2jxjj: (1:8)For a typical sample of xi's, these values range from O(1=N) to 1 � O(1=N). Thus, if weuse e.g. the Metropolis updating rule, then the probability of a step from � to �j will be� exp(�2�jxjj). It is by no means clear how high the saddle point between two deep wellswill be, and whether they will all be of the same order. This implies that the actual timescale for transition times between deep wells is not obvious, nor it is clear what the trapmodel describing the long term dynamics would have to be.Of course, changing the Hamiltonian from H(�) to lnH(�), as was proposed in [JK],changes the foregoing discussion completely and brings us back to the more REM-like situa-tion.Acknowledgements: We thank Stephan Mertens for introducing us to the number parti-tioning problem and for valuable discussions.2. A general extreme value theorem.Consider series of M random vectors ~Vi;M = (V 1i;M ; : : : ; V pi;M) 2 Rp+, i = 1; : : : ;M .Notation. We write P�(l) when the sum is taken over all possible ordered sequences ofdi�erent indices fi1; : : : ; ilg � f1; : : : ;Mg. We also write P�(r1);::: ;�(rR)(�) when the sumis taken over all possible ordered sequences of disjoint ordered subsets �(r1) = (i1; : : : ; ir1),�(r2) = (ir1+1; : : : ; ir2); : : : ; �(rR) = (ir1+���+rR�1+1; : : : ; ir1+���+rR) of f1; : : : ;Mg.



6 Section 2Theorem 2.1: Assume that for all �nite l = 1; 2; : : : and all set of constants c�j > 0,j = 1; : : : ; l, � = 1; : : : ; p we haveX�(l)=(i1 ;::: ;il)P�V �ij;M < c�j 8j = 1; : : : ; l; � = 1; : : : ; p�! Yj=1;::: ;l�=1;::: ;p c�j ; M !1: (2:1)Then the point process �pM = MXi=1 Æ(V 1i;M ;::: ;V pi;M ) (2:2)on Rp+ converges weakly as M !1 to the Poisson point process Pp on Rp+ with the intensitymeasure which is the Lebesgue measure.Proof. Denote by �pM(A) the number of points of the process �pM in a subset A � Rp+.The proof of this theorem follows from Kallenberg theorem [Kal] on the week convergenceof a point process �pM to the Poisson process �p. Applying his theorem in our situation weakconvergence holds whenever(i) For all cubes A = Qp�=1[a�; b�)E�pM (A)! jAj; M !1: (2:3)(ii) For all �nite union A = SLl=1Qp�=1[a�l ; b�l ) of disjoint cubesP(�pM(A) = 0)! ��jAj; M !1: (2:4)Our main tool of checking (i) and (ii) is the inclusion-exclusion principle which can besummarized as follows: for any l = 1; 2; : : : and any events O1; : : : ; OlP� \i=1;::: ;lOi� = lXk=0 XAk=(i1;::: ;ik )�f1;::: ;lgi1<i2<���<ik (�1)kP� k\j=1 �Oij� (2:5)where �Oij are complementary events to Oij . We use (2.5) to \invert" the inequalities oftype fV �i;M � a�g, i.e. to represent their probability as the sum of probabilities of oppositeevents, that can be estimated by (2.1). The power of the inclusion-exclusion principle comesfrom the fact that the partial sums of the right-hand side provide upper and lower bounds(Bonferroni inequalities, see [Fe]), i.e. for any n � [l=2]:2nXk=0 XAk=(i1 ;::: ;ik)�f1;::: ;lgi1<i2<���<ik (�1)kP� k\j=1 �Oij� � P� \i=1;::: ;lOi� � 2n+1Xk=0 XAk=(i1 ;::: ;ik)�f1;::: ;lgi1<i2<���<ik (�1)kP� k\j=1 �Oij�:(2:6)



Number partitioning 7They imply that it will be enough to compute the limits as N " 1 of terms for any �xedvalue of l. Using (2.5), we derive from the assumption of the theorem the following moregeneral statement: Let A1; : : : ; Al 2 Rp+ be any subsets of volumes jA1j; : : : ; jAlj that can berepresented as unions of disjoint cubes. Then for any m1; : : : ; mlX�(m1);�(m2);::: ;�(ml)P(~Vi;M 2 Aj 8i 2 �(mr); 8r = 1; : : : ; l)! lYr=1 jArjmr : (2:7)Let us �rst concentrate on the proof of this statement. We �rst show it in the case of onesubset, l = 1, which is a cube A = Qp�=1[a� ; b�). Let m = 1. We denote by PA�f1;::: ;pg thesum over all 2p possible ordered subsets of coordinates : A denotes the subset of coordinates� such that the inequalities V �i;M < a� are excluded leaving thus V �i;M < b�. Then by (2.5)applied to Tp�=1fV �i;M � a�gMXi=1 P(~Vi;M 2 A) = MXi=1 P(a� � V �i;M < b�; 8� = 1; : : : ; p)= MXi=1 XA�f1;::: ;pg(�1)jAjP(V �i;M < a�1I� 62A + b�1I�2A; 8� = 1; : : : ; p)= XA�f1;::: ;pg(�1)jAj MXi=1 P(V�i;M < a�1I� 62A + b�1I�2A; 8� = 1; : : : ; p): (2:8)The interior sum in (2.8)PMi=1P(�) converges toQp�=1(a�1I� 62A+b�1I�2A) by the assumption(2.1). ThuslimM!1 MXi=1 P(~Vi;M 2 A) = XA�f1;::: ;pg(�1)jAj pY�=1(a�1I� 62A + b�1I�2A) = pY�=1(b� � a�) = jAj:(2:9)Now let m > 1. Denote by PA1;A2;::: ;Am the sum over all 2mp ordered sequences of all 2punordered subsets A � f1; : : : ; pg. Here Aj is the subset of coordinates corresponding to thejth index in the row �(m) = (i1; : : : ; im). Then by (2.5)X�(m)P(~Vi;M 2 A 8i 2 �(m)) = X�(m)P�a� � V �i;M < b� 8i 2 �(m); 8� = 1; : : : ; p�= X�(m) XA1;::: ;Am(�1)jA1j+���jAmjP�V �i;M < a�1I� 62Aj + b�1I�2Aj 8i = ij 2 �(m); 8j = 1; : : : ; m; 8��= XA1;::: ;Am(�1)jA1j+���jAmj X�(m)P(V �i;M < a�1I� 62Aj + b�1I�2Aj 8i = ij 2 �(m); 8j = 1; : : : ; m; 8�):(2:10)



8 Section 2By (2.1) applied to the interior sum of (2.10)P�(m)P(�) we get:limM!1 X�(m)P(~Vi;M 2 A 8i 2 �(m)) = XA1;::: ;Am(�1)jA1j+���jAmj mYj=1 pY�=1(a�1I� 62Aj+b�1I�2Aj ) = jAjm:Assume now that l > 1 and Ar = Qp�=1[a�r ; b�r ), r = 1; : : : ; l. ThenX�(m1);�(m2);::: ;�(ml)P�~Vi;M 2 Aj 8i 2 �(mr); 8r = 1; : : : ; l�= X�(m1);�(m2);::: ;�(ml) XA11;::: ;A1m1 ;;::: ;Al1;::: ;Alml (�1)jA11j+���+jAlml jP�V �i;M < a�1I� 62Arj + b�1I�2Arj8i = ij 2 �(mr); 8j = 1; : : : ; mr; 8r = 1; : : : ; l; 8��= XA11;::: ;A1m1(�1)jA11j+���+jA1m1 j � � � XAl1;::: ;Alml(�1)jAl1j+���+jAlml j X�(m1);�(m2);::: ;�(ml)P�V �i;M < a�1I� 62Arj + b�1I�2Arj 8i = ij 2 �(mr); 8j = 1; : : : ; mr; 8r = 1; : : : ; l; 8�� :(2:11)Due to (2.1) applied once more to the interior sum P�(m1);::: ;�(ml)P(�), (2.11) convergesto XA11;::: ;A1m1(�1)jA11j+���+jA1m1 j � � � XAl1;::: ;Alml(�1)jAl1j+���+jAlml j lYr=1 mrYj=1 pY�=1(a�1I� 62Arj + b�1I�2Arj )= XA11;::: ;A1m1(�1)jA11j+���+jA1m1 j � � � XAl�11 ;::: ;Al�1ml�1(�1)jAl�11 j+���+jAl�1ml�1 jl�1Yr=1 mrYj=1 pY�=1(a�1I� 62Arj + b�1I�2Arj )jAljml= jA1jm1 jA2jm2 � � � jAljml : (2:12)Let �nally A1 = Ss1k=1A1;k; : : : ; Al = Sslk=1Al;k be unions of s1; : : : ; sl disjoint cubesrespectively. Then we may write:X�(m1);�(m2);::: ;�(ml)P(~Vi;M 2 Aj 8i 2 �(mr); 8r = 1; : : : ; l)= Xm1;1 ;::: ;m1;s1�0m1;1+���+m1;s1 =m1 � � � Xml;1;::: ;ml;sl�0ml;1+���+ml;sl=ml X�(m1;1);::: ;�(m1;s1 );::: ;�(ml;1);::: ;�(ml;sl )P�~Vi;M 2 Ar;k8i 2 �(mr;k) 8r = 1; : : : ; l; 8k = 1; : : : ; sr� (2:13)



Number partitioning 9and apply to the interior sum P�(m1;1);::: ;;�(ml;sl )P(�) the statement (2.7) about cubes justproven by (2.12). Then (2.13) converges toXm1;1 ;::: ;m1;s1�0m1;1+���+m1;s1 =m1 � � � Xml;1 ;::: ;ml;sl�0ml;1+���+ml;sl=ml lYr=1 srYk=1 jAr;kjmr;k = lYr=1 Xmr;1 ;::: ;mr;sr�0mr;1+���+mr;sr =mr srYk=1 jAr;kjmr;k= lYr=1 jArjmr : (2:14)This �nishes the proof of the statement (2.7).Now we are ready to turn to the proof of the theorem. The condition (i) has been alreadyshown by (2.9). To verify (ii), let us construct a cube B = Qp�=1[0;maxl=1;::: ;L b�l ) of volumejBj, then clearly A � B. For any R > 0 we may write the following decomposition:P(�M(A) = 0) = RXr=0 1r!X�(r)P�~Vi;M 2 B nA 8i 2 �(r); ~Vi;M 62 B 8i 62 �(r)�+P(�M(A) = 0;�M(B) > R) � I1(R;M) + I2(R;M): (2:15)Applying the inclusion-exclusion (2.6) principle toM � r events f~Vi 62 Bg for i 62 �(r), wemay bound I1(R;M) for all n � [(M � r)=2] byRXr=0 1r! 2nXk=0 (�1)kk! X�(r);�(k)P(~Vi;M 2 B nA 8i 2 �(r); ~Vi;M 2 B 8i 2 �(k)) � I1(R;M)� RXr=0 1r! 2n+1Xk=0 (�1)kk! X�(r)�(k)P(~Vi;M 2 B nA 8i 2 �(r); ~Vi;M 2 B 8i 2 �(k)): (2:16)Then for any �xed n � 1, the statement (2.7) applied to the subsets A=B and B imply:RXr=0 jB nAjrr! 2nXk=0 (�1)kjBjkk! � limM!1 I1(R;M) � RXr=0 jB nAjrr! 2n+1Xk=0 (�1)kjBjkk! : (2:17)Since n can be �xed arbitrarily large, it follows thatlimM!1 I1(R;M) = e�jBj RXr=0 jB nAjrr! : (2:18)The statement (2.7) also giveslimM!1 I2(R;M) � limM!1P(�1M(B) > R) = limM!1 1R! X�(R)P(~Vi;M 2 B 8i 2 �(R)) = jBjRR! :(2:19)



10 Section 3By choosing R large enough, the limit (2.19) can be done as small as desired and the sum(2.18) can be done as close to the exponent ejBnAj�jBj as wanted. Hence, limM!1P(�1M(A)) =e�jAj. This concludes the proof of the theorem. }3. Application to number partitioningWe will now prove Theorem 1.1. In fact, the proof will follow directly from Theorem 2.1and the following proposition:Proposition 3.1: Let S(k;N) = kN(2�N) 1�k2 k k2 (k!)�1 (3:1)be borrowed from (1.3). We denote by P�1;::: ;�l2�N (�) the sum over all possible orderedsequences of di�erent elements of �N . Then for any l = 1; 2; : : : ; any constants c�j > 0,j = 1; : : : ; l, � = 1; : : : ; k� 1 we have:X�1;::: ;�l2�N P�8� = 1; : : : ; k � 1; 8j = 1; : : : ; l jY �(�j)jp2(N=k)varX < c�jS(k;N) 1k�1 �! Yj=1;::: ;l�=1;::: ;k�1 (2(2�)�1=2c�j ): (3:2)Informal arguments. Before proceeding with the rigorous proof, let us give intuitive ar-guments supporting this lemma.The random variables Y �(�j )p2(N=k)varX are the sums of independent identically distributedrandom variables with the expectations EY �(�j) = 0 and the covariance matrixBN (�1; : : : ; �l)with the elementsb�;i;s = cov (Y �(�i); Y (�s))2(N=k)varX = PNn=1(1If�in=�g � 1If�in=�+1g)(1If�sn=g � 1If�sn=+1g)2(N=k) : (3:3)In particular:b�;�i;i; = 1; b�;�+1i;i = �1=2; b�;i;i = 0 for  6= �; � + 1; 8 i = 1; : : : ; k� 1: (3:4)Moreover, the property that b�;i;j = o(1) as N ! 1 for all i 6= j, �, , holds for a numberR(N; l) of sets �1; : : : ; �l 2 �
lN which is R(N; l) = j�N jl(1 + o(1)) = S(k;N)l(1 + o(1))with o(1) exponentially small as N ! 1. For all such sets �1; : : : ; �l, by the Central Lim-it Theorem, the random variables Y �(�j)p2(N=k)varX should behave asymptotically as centered



Number partitioning 11Gaussian random variables with covariances b�;i;j = 1fi=j;�=g + (�1=2)1fi=j;=�+1g+ o(1).The determinant of this covariance matrix is 1 + o(1). Hence, the probability P(�) de�ned in(3.2) that these Gaussians belong to the exponentially small segments[�c�j S(k;N)�1=(k�1); c�j S(k;N)�1=(k�1)] is of the order Qj=1;::: ;l�=1;::: ;k�1 (2(2�)�1=2c�j S(k;N)�1=(k�1)).Multiplying this probability by the number of terms R(N; l) we get the result claimed in (3.2).Let us turn to the remaining tiny part of �
lN where �l; : : : ; �l are such that b�;i;j 6! 0for some i 6= j as N ! 1. Here two possibilities should be considered di�erently. The �rstone is when the covariance matrix BN (�1; : : : ; �l) of Y �(�j)p2(N=k)varX is non-degenerate. Theninvoking again the Central Limit Theorem, the probability P(�) in this case is of the order(detBN (�1; : : : ; �l))�1=2 Yj=1;::: ;l�=1;::: ;k�1 (2(2�)�1=2c�j S(k;N)�1=(k�1)):But from the de�nition of b�;i;j (detBN (�1; : : : ; �l))�1=2 may grow at most polynomially.Thus the probability P(�) is about S(k;N)�l up to a polynomial term while the number ofsets �1; : : : ; �l in this part is exponentially smaller than S(k;N)l. Hence, the contributionof all such �l; : : : ; �l in (3.2) is exponentially small.The case of �1; : : : ; �l with B(�1; : : : ; �l) degenerate is more delicate. Although the num-ber of such �1; : : : ; �l is exponentially smaller than S(k;N)l, the probability P(�) is exponen-tially bigger than S(k;N)�l since the system of l(k�1) random variables fY �(�i)gi=1;::: ;l�=1;::: ;k�1is linearly dependent! First of all, it may happen that there exist 1 � i1 < i2 < � � � < ip � lsuch that the basis of this system consists of (k � 1)p elements fY �(�ij )gj=1;::: ;p�=1;::: ;k�1. Thenthe assumption that the elements �1; : : : ; �l of �N must be di�erent, plays a crucial role:due to it the number of such sets �1; : : : ; �l in this sum remains small enough compare tothe probability P(�), consequently their total contribution to (3.2) vanishes.Finally, for some sets �1; : : : ; �l, there is no such p < l: for any basis, there exists a numberj 2 f1; : : : ; lg such that the random variables Y �(�j) are included in the basis for some non-empty subset of coordinates � and are not included there for the complementary non-emptysubset of �. This last part is clearly absent in the case k = 2. It turns out that its analysisis quite tedious. We manage to complete it only in the case of the constrained problem byevaluating the number of such sets �1; : : : ; �l where each of spins' values f1; : : : ; kg �guresout exactly N=k times and by showing that the corresponding probabilities P(�) are negligiblecompare to this number. The only drawback that remains in the study of the unconstrainedproblem is precisely the analysis of this part.



12 Section 3Proof of Proposition 3.1. In the course of the proof we will rely on four lemmata that will bestated here but proven separately in Section 4. Letf�1;::: ;�lN (ft�;jg) = E exp � ip2(N=k)varX Xj=1;::: ;l;�=1;::: ;k�1 t�;jY �(�j)� (3:5)be the characteristic function of the random vector (2(N=k)varX)�1=2fY �(�j)g j=1;::: ;l;�=1;::: ;k�1 .Here ~t = ft�;jg�=1;::: ;k�1;j=1;::: ;l is the vector with (k� 1)l coordinates. ThenP�8� = 1; : : : ; k� 1; 8j = 1; : : : ; l jY �(�j)jp2(N=k)varX < c�jS(k;N) 1k�1 � (3:6)= 1(2�)l(k�1) limD!1 Z[�D;D]l(k�1)f�1;::: ;�lN (ft�;jg) Yj=1;::: ;l;�=1;::: ;k�1eit�;jc�j S(k;N) �1k�1 � e�it�;j c�j S(k;N) �1k�1it�;j dt�;j:It will be convenient to have in mind the following representation throughout the proof. Anycon�guration � gives rise to k � 1 con�gurations �(1); : : : ; �(k�1) 2 f�1; 0; 1gN such that�(�)n = 1If�n=�g � 1If�n=�+1g; n = 1; : : : ; N: (3:7)We now de�ne the N� (k�1) matrix C(�) composed of columns �(1); : : : ; �(k�1). Then it iscomposed of types of k rows of length k � 1: O0 = (1; 0; : : : ; 0), O1 = (�1; 1; 0 : : : ; 0), O2 =(0;�1; 1; 0; : : : ; 0); : : : ; Ok�2 = (0; : : : ; 0;�1; 1), Ok�1 = (0; : : : ; 0;�1). They correspond tospin values 1; 2; : : : ; k respectively: if �n = �, then the nth row of C(�) is O��1.4 Each ofthese k rows is repeated N=k times in the construction of C(�). ThenY �(�) = NXn=1Xn�(�)n :Let C(�1; : : : ; �l) be the N � (k � 1)l matrix composed by the columns�1;(1); �1;(2),: : : ,�1;(k�1),�2;(1), : : : ; �l;(k�1). Then it is easy to see that the functionf�1;::: ;�lN (ft�;jg) is the product of N functionsf�1 ;::: ;�lN (ft�;jg) = NYn=1 E exp � iXnp2(N=k)varX fC(�1; : : : ; �l)~tgn�= NYn=1 exp� ip2(N=k)varX fC(�1; : : : ; �l)~tgn�� 1i(p2(N=k)varX)�1fC(�1; : : : ; �l)~tgn ; (3:8)4The case k = 2 is particular, since here C(�) is the vector with elements �1; i.e. in this case thisreparametrisation just corresponds to passing from values f1; 2g to f�1;+1g.



Number partitioning 13where fC(�1; : : : ; �l)~tgn is the nth coordinate of the product of the vector ~t = ft�;jg�=1;::: ;k�1;j=1;::: ;lwith the matrix C(�1; : : : ; �l).We will split the sum of (3.2) into two termsX�1;::: ;�l2�N P(�) = X�1;::: ;�l2�NrankC(�1;::: ;�l)=(k�1)l P(�)+ X�1;::: ;�l2�NrankC(�1;::: ;�l)<(k�1)l P(�) (3:9)and show that the �rst term converges to the right-hand side of (3.2) while the second termconverges to zero.We start with the second term in (3.9) that we split into two partsX�1;::: ;�l2�NrankC(�1;::: ;�l)<(k�1)l P(�) = J1N + J2N : (3:10)In the �rst part J1N the sum is taken over ordered sets �1; : : : ; �l of di�erent elements of �Nwith the following property: the rank r of C(�1; : : : ; �l) is a multiple of (k�1) and, moreover,there exist con�gurations �i1 ; : : : ; �ir=(k�1) such that all of �(1);i1 ; �(2);i1 ; : : : ; �(k�1);ir=(k�1)constitute the basis of the columns of the matrix C(�1; : : : ; �l), i.e. the rank of C(�i1 ; : : : ; �ir=(k�1))equals r. Consequently, for any j 2 f1; : : : ; lg n fi1; : : : ; ir=(k�1)g all of �(1);j ; : : : ; �(k�1);jare linear combinations of the columns of the matrix C(�i1 ; : : : ; �ir=(k�1)). In the remainingpart, J2N , the sum is taken over con�gurations �1; �2; : : : ; �l satisfying the complementaryproperty: for any basis of the columns of C(�1; : : : ; �l) there exist at least one con�guration�i such that some of the con�gurations �(1);i; : : : ; �(k�1);i are included in this basis and someothers are not5.The following Lemma 3.2 shows that the sum J1N is taken over sets of di�erent �1; : : : ; �lsuch that the matrix of the basis C(�i1 ; : : : ; �ir=(k�1)) contains at most (kr=(k�1)�1) di�erentrows.Lemma 3.2: Assume that the matrix C(�1; : : : ; �l) contains all kl di�erent rows. Assumethat a con�guration ~� is such that each ~�(1); : : : ; ~�(k�1) is a linear combination of the columnsof the matrix C(�1; : : : ; �l). Then the con�guration ~� is obtained by a permutation of spinvalues in one of the con�gurations �1; : : : ; �l, i.e. ~� coincides with one of �1; : : : ; �l as anelement of �N .5In the case k = 2 the term J2N can obviously not exist. This leads to considerable simpli�cations.



14 Section 3Remark: In the case k = 2, Lemma 3.2 has been an important ingredient in the analysis ofthe Hop�eld model. It possibly appeared �rst in a paper by Koch and Piasko [KP].In fact, if in J1N the matrix C(�i1 ; : : : ; �ir=(k�1)) contained all kr=(k�1) di�erent rows, thenby Lemma 3.2 the remaining con�gurations �j with j 2 f1; : : : ; lg n fi1; : : : ; ir=(k�1)g wouldbe equal to one of �i1 ; : : : ; �ir=(k�1) as elements of �N , which is impossible since the sum in(3.10) is taken over di�erent elements of �N . Thus there can be at most O((kr=(k�1) � 1)N)possibilities to construct C(�i1 ; : : : ; �ir=(k�1)) in the sum J1N . Furthermore, there is only aN -independent number of possibilities to complete it by linear con�gurations of its columnsup to C(�1; : : : ; �l). To see this, assume that there are � < kr=(k�1) di�erent rows in thematrix C(�i1 ; : : : ; �ir=(k�1)) and consider its restriction to these rows which is the ��r matrixeC(�i1 ; : : : ; �ir=(k�1)). Then eC(�i1 ; : : : ; �ir=(k�1)) has the same rank r as C(�i1 ; : : : ; �ir=(k�1)).Now there are not more than 3(�(l(k�1)�r)) ways to complete the matrix eC to a � � l(k� 1)matrix with elements 1;�1; 0 such that all added columns of length � are linear combinationsof those of eC. But each such choice determines uniquely the coeÆcients in these linearcombinations, and hence the completion of the full N � r matrix C(�i1 ; : : : ; �ir=(k�1)) up tothe N � l(k� 1) matrix C(�1; : : : ; �l) is already fully determined. Thus the number of termsin the sum representing J1N is smaller thankr=(k�1)�1X�=r �N3(�(l(k�1)�r)) = O(�kr=(k�1) � 1�N ): (3:11)The next proposition gives an a priori estimate for each of these terms.Lemma 3.3: There exists a constant K(k; l) > 0 such that for any di�erent �1; : : : ; �l 2�N , any r = rank C(�1; : : :�l) � (k � 1)l and all N > 1P�8� = 1; : : : ; k�1; 8j = 1; : : : ; l jY �(�j)jp2(N=k)varX < c�jS(k;N) 1k�1 � � KS(k;N)�r=(k�1)N3r=2:(3:12)Hence, by Lemma 3.3 each term in J1N is smaller than KS(k;N)�r=(k�1)N3r=2 with theleading exponential term k�Nr=(k�1). It follows that J1N = O�[(kr=(k�1)�1)k�r=(k�1)]N�! 0as N !1.Let us now turn to J2N in (3.10). The next proposition allows to evaluate the number ofterms in this sum.Lemma 3.4: Let DN be any N � q matrix of rank r � q. Assume that for any N > 1it is composed only of R di�erent rows taken from a �nite set D of cardinality R � k.



Number partitioning 15Let QN (R; t) be the number of con�gurations � such that the matrix DN completed by thecolumns �(1); : : : ; �(k�1) has rank r + t where 1 � t � k � 2. Then there exists a constantK(R; t; k) > 0, depending only on R; t; k, such thatQN(R; t) � K(R; t; k)(N(t+ 1)=k)!((N=k)!)t+1 : (3:13)Now, to treat J2N , consider �1; : : : ; �l such that (k� 1)m+ t1 + t2 + � � �+ ts = r columnsof C(�1; : : : ; �l) form a basis for the span of all column vectors of this matrix. Then thereexist �i1 ; : : : ; �im such that all of �(v);ip are included in the basis for all v = 1; : : : ; k � 1,p = 1; : : : ; m, and there exist �j1 ; : : : ; �js such that among �(v);jq tq � 1 con�gurations areincluded in the basis and other k � 1 � tq � 1 are not, q = 1; : : : ; s. By Lemma 3.4 thenumber of possibilities to construct such a matrix C(�1; : : : ; �l) isO�kmN sYq=1 (N(tq + 1)=k)!((N=k)!)tq+1 � � kNm qYs=1(tq + 1)N(tq+1)=kup to leading exponential order. The probability in (3.9) is already estimated in Lemma 3.3:it is O(N3r=2S(k;N)�r=(k�1)) � k�Nr=(k�1) = k�N(m(k�1)+t1+t2+���+ts)=(k�1):Thus, to conclude that J2N ! 0 exponentially fast, it suÆces to show that for any k = 3; 4; : : :and any t = 1; 2; : : : ; k � 2 we have (t + 1)(t+1)=kk�t=(k�1) < 1, which is reduced to theinequality �(k; t) = k � 1t ln(t+ 1)� kt+ 1 ln k < 0:It is elementary to check that @�(k;t)@k < 0 for all k � t+1 and t � 1. Then, given t, it suÆcesto check this inequality for the smallest value of k which is k = t+ 2, that is that (k) = (k � 1)2 ln(k � 1)� k(k� 2) lnk < 0:This is easy as  0(k) < 0 for all k � 3 and  (3) < 0. Hence, J2N ! 0 as N ! 1. Thus theproof of the convergence to zero of the second term of (3.9) is complete.We now concentrate on the convergence of the �rst term of (3.9). Let us �x any � 2 (0; 1=2)and introduce a subset R�l;N � �
lN :R�l;N = n�1; : : : ; �l 2 �N : 81 � i < r � l; 1 � �; ; � � k; � 6= 



16 Section 3��� NXn=1(1If�in=�g � 1If�in=g)1If�rn=�g��� < N�+1=2o: (3:14)This subset can be constructed as follows. Take �1 where each of k possible values of spinsis present N=k times. Divide each set A� � fi 2 f1; : : : ; Ng : �1i = �g, � 2 f1; : : : ; kg,into N=k+ O(N�+1=2) pieces A�; of length N=k2 +O(N�+1=2). Then the spins of �2 havethe same value on the subsets of indices which are composed by k such pieces A�; takenfrom di�erent A� , � = 1; : : : ; k. Next, divide k2 subsets A�; into k pieces A�;;Æ. Thespins of �3 have the same values on the subsets composed by k2 such pieces A�;;Æ of lengthN=k3 + O(N�+1=2) taken from di�erent A�; , etc. It is an easy combinatorial computationto check that with some constant h > 0j�
lN n R�l;N j � kNl exp(�hN2�) (3:15)from where by (1.3) jR�l;N j = S(k;N)l(1 + o(1)); N !1: (3:16)It is also not diÆcult to see that for any �1; : : : ; �l 2 R�l;N the rank of C(�1; : : : ; �l) equals(k � 1)l. Note that the covariance matrix BN (see (3.3)) can be expressed asBN (�1; : : : ; �l) = CT (�1; : : : ; �l)C(�1; : : : ; �l)2(N=k)varX : (3:17)Thus by de�nition of R�N;l, its elements satisfyb�;i;j = O(N��1=2) 8 �; ; i 6= j; (3:18)uniformly for 8 �1; : : : ; �l 2 R�N;l. Therefore, for any �1; : : : ; �l 2 R�l;n, detBN (�1; : : : ; �l) =1 + o(1) and consequently the rank of C(�1; : : : ; �l) equals (k � 1)l.By Lemma 3.3 and the estimate (3.16)X�1;::: ;�l 62R�l;NrankC(�1;::: ;�l)=(k�1)l P(�)� kNle�hN2�KN3(k�1)l=2S(k;N)�l ! 0: (3:19)To complete the study of the �rst term of (3.9), let us show thatX�1;::: ;�l2R�l;N P(�)! (2�)�(k�1)l=2 Yj=1;::: ;l�=1;::: ;k�1 (2c�j ) (3:20)



Number partitioning 17with P(�) de�ned by (3.6). Using the representation (3.6), will divide the normalized proba-bility P(�) of (3.6) into �ve partsS(k;N)l� Yi=1;::: ;k�1;j=1;::: ;l (2c�j )�1�P(�) = 5Xi=1 I iN (�1; : : : ; �l) (3:21)where: I1N � (2�)�l(k�1) Zk~tk<�N1=6 e�~tBN (�1;::: ;�l)~t=2 Y�=1;::: ;k�1;j=1;::: ;l dt�;j; (3:22)I2N � (2�)�l(k�1) Zk~tk<�N1=6 �f�1;::: ;�lN (ft�;jg)� e�~tBN (�1;::: ;�l)~t=2� Y�=1;::: ;k�1;j=1;::: ;l dt�;j ; (3:23)I3N � (2�)�l(k�1) Z�N1=6<k~tk<ÆpN f�1 ;::: ;�lN (ft�;jg) Y�=1;::: ;k�1;j=1;::: ;l dt�;j; (3:24)I4N �(2�)�l(k�1) Zk~tk�ÆpN f�1;::: ;�lN (ft�;jg)� h Y�=1;::: ;k�1j=1;::: ;l eit�;j c�j S(k;N)�1=(k�1) � e�it�;j c�j S(k;N)�1=(k�1)2itj;�c�j S(k;N)�1=(k�1) � 1i Y�=1;::: ;k�1;j=1;::: ;l dt�;j(3:25)and I5N �(2�)�l(k�1) limD!1 Z[�D;D]l(k�1)\k~tk>ÆpN f�1;::: ;�lN (ft�;jg)� Y�=1;::: ;k�1j=1;::: ;l eit�;jc�j S(k;N)�1=(k�1) � e�it�;j c�j S(k;N)�1=(k�1)2it�;jc�j S(k;N)�1=(k�1) dt�;j: (3:26)for values Æ; � > 0 to be chosen appropriately later. We will show that there is a choice suchthat I iN(�1; : : : ; �l) ! 0 for i = 2; 3; 4; 5 and I1N(�1; : : : ; �l) ! (2�)�(k�1)l=2, uniformly for�1; : : : ; �l 2 R�l;N as N ! 1. These facts combined with (3.16) imply the assertion (3.20)and complete the proof of the proposition. The following lemma gives control over some ofthe terms appearing above.Lemma 3.5: There exist constants C > 0, � > 0, Æ > 0, and � > 0, such that for all�1; : : : ; �l 2 R�l;N , the following estimates hold:(i) ��f�1;::: ;�lN (ft�;jg)� e�~tBN (�1;::: ;�l)~t=2�� � Cj~tk3pN e�~tBN (�1;::: ;�l)~t=2; for all k~tk < �N1=6(3:27)



18 Section 3(ii) ��f�1;::: ;�lN (ft�;jg)�� � e�~tBN (�1;::: ;�l)~t=2+Cjtj3N�1=2 for all k~tk < ÆpN; (3:28)and(iii) ��f�1;::: ;�lN (ft�;jg)�� � e��k~tk2 for all k~tk < ÆpN: (3:29)We can now estimate the terms I iN . First, by a standard estimate on Gaussian integrals,I1N (�1; : : : ; �l) = ((2�)(k�1)ldetBN (�1; : : : ; �l))�1=2 + o(1)= (2�)�(k�1)l=2 + o(1); N !1; (3:30)where o(1) is uniform for �1; : : : ; �l 2 R�l;N by (3.18) and (3.4). Thus I1N gives the desiredmain contribution.The second part I2N (�1; : : : ; �l) = O(N�1=2), uniformly for �1; : : : ; �l 2 R�l;N by theestimates (3.27) and (3.18), (3.4). The third part I3N (�1; : : : ; �l) is exponentially small by(3.29). To treat I4N(�1; : : : ; �l), we note that for any � > 0 one can �nd N0 such that forall N � N0 and all ~t with k~tk � ÆpN the quantity in square brackets is smaller than � inabsolute value, and apply again (3.29). Finally, we estimatejI5N(�1; : : :�l)j � (2�)�l(k�1) Zk~tk>ÆpN jf�1;::: ;�lN (ft�;jg)j Yj=1;::: ;l;�=1;::: ;k�1 dt�;j: (3:31)For any �1; : : : ; �l 2 R�l;N the matrix C(�1; : : : ; �l) contains all kl possible di�erent rows andby (3.8) f�1;::: ;�lN (ft�;jg) is the product of kl di�erent characteristic functions, where eachis taken to the power N=kl(1 + o(1)). Let us �x from a set of kl rows of C(�1; : : : ; �l) any(k � 1)l linearly independent and denote by �C the matrix composed by them. There exists�(Æ) > 0 such that q~t �CT �C~t=(2(1=k)varX) � � for all ~t with k~tk > Æ. Changing variables~s = ~t �CT =p2(N=k)varX one gets the boundjI5N(�1; : : : ; �5)j �(2�)�l(k�1)(2(N=k)varX)l(k�1)=2(det �C)�1� Zk~sk>� Y�=1;::: ;k�1;j=1;::: ;l ���eis�;j � 1is�;j ���Nk�l(1+o(1))ds�;j� CN l(k�1)=2(1� h(�))Nk�l(1+o(1))�2 Zk~sk>� Y�=1;::: ;k�1;j=1;::: ;l ���eis�;j � 1is�;j ���2ds�;j;(3:32)



Number partitioning 19where h(�) > 0 is chosen such that j(eis � 1)=sj < 1 � h(�) for all s with jsj > �=((k� 1)l)and C is a constant independent of the set �1; : : : ; �l and N . Thus I5N (�1; : : : ; �l) ! 0,uniformly for �1; : : : ; �l 2 R�l;N , and exponentially fast as N ! 1. This concludes the proofof (3.20) and of Proposition 3.1. }4. Proofs of Lemmas 3.2, 3.3, 3.4, 3.5.Proof of Lemma 3.2. Let �rst l = 1. Without loss of generality we may assume that the �rstk rows of C(�1) are di�erent. Then for all i = 1; : : : ; k� 1, the following system of equationshas a solution: �(i)1 = ~�(i)1��(i)1 + �(i)2 = ~�(i)2��(i)2 + �(i)3 = ~�(i)3� � ���(i)k�2 + �(i)k�1 = ~�(i)k�1� �(i)k�1 = ~�(i)k : (4:1)Then necessarily Pkn=1 ~�(i)n = 0 for all i = 1; 2; : : : ; k�1, since the sum of the left-hand sidesof these equations equals 0. But for at least one j 2 f1; : : : ; kg and i = 1; : : : ; k� 1, �(i)j 6= 0,for otherwise �(i)s = 0 for all s = 1; : : : ; k i = 1; : : : ; k�1 and consequently C(~�) is composedonly of zeros, which is impossible. Without loss of generality (by de�nition of �N we mayalways permute spin values) we may assume that ~�(1)j 6= 0.We will use the following crucial property of the con�gurations ~�(1); : : : ; ~�(k�1):~�(j)n = 1 =) ~�(j+1)n = 0; ~�(j+2)n = 0; : : : ; ~�(k�1)n = 0: (4:2)~�(j)n = �1 =) ~�(j+1)n = 1; ~�(j+2)n = 0; : : : ; ~�(k�1)n = 0: (4:3)It follows that, for a certain number t1 � 1 of pairs of indices n11; n21; : : : ; n1t1 ; n2t1 2 f1; : : : ; kg,we must have that ~�(1)n1u = 1 and ~�(1)n2u = �1, u = 1; : : : ; t1. We say that these 2t1 indices are\occupied" from the step j = 1 on, since, by (4.2) and (4.3), we know all values ~�(j)n1u = 0 forall j = 2; 3; : : : ; k � 1, ~�(2)n2u = 1, and ~�(j)n2u = 0 for all j = 3; : : : ; k � 1, u = 1; 2; : : : ; t1. Wesay that the other k � 2t1 indices are \free" at step j = 1. Then we must attribute to atleast t1 of k � 2t1 spins ~�(2)n with \free" indices the value ~�(2)n = �1 in order to ensure thatPkn=1 ~�(2)n = 0. We could also attribute to a certain number t2 � 0 of pairs of the remaining



20 Section 4k�3t1 spins with \free" indices the values ~�(2)n = �1. Thus by (4.2), (4.3) for j = 2 we knowthe values of ~�(j)n for j = 2; 3; : : : ; k � 1 for at least 3t1 + 2t2 indices n. We say that theyare \occupied" from j = 2 on. Among them ~�(3)n = 1 for the number of indices t1 + t2 and~�(3)n = 0 for the others 2t1+ t2. Then we should assign to the number t1+ t2 of the remainingk � 3t1 � 2t2 spins ~�(3)n with \free" indices the value ~�(3)n = �1 to make Pkn=1 �(3)n = 0.We could also attribute to a certain number t3 � 0 of pairs of the remaining k � 4t1 � 3t2spins the values �1. Hence, after the third step, 4t1 + 3t2 + 2t3 indices are \occupied" etc.Finally, after (j � 1)th step, jt1 + (j � 1)t2 + : : :+ 2tj�1 indices are \occupied", ~�(j)n = 1 fort1 + � � �+ tj�1 among these indices, and at the jth step we must put ~�(j)n = �1 for the samenumber t1 + t2 + : : :+ tj�1 of \free" indices to ensure that Pkn=1 ~�(j)n = 0. But, if t1 > 1 ort1 = 1 but ti > 0 for some 2 � i � k � 1, then, for some j � k � 1, we havek � jt1 � (j � 1)t2 � � � � � 2tj�1 < t1 + t2 + � � �+ tj�1:(In fact, for j = k�1, if, t1 > 1, then obviously k� (k�1)t1 < t1, and if t1 = 1 but ti > 0 wehave k� (k�1)�2 < 1). This means that at the jth step there are not enough \free" indicesamong the remaining k�jt1�(j�1)t2� : : :�2tj�1 ones such that we could assign ~�(j)n = �1to ensure Pkn=1 ~�(j)n = 0. Hence, the only possibility is t1 = 1 and t2 = t3 = � � � = tk�1 = 0.So, at the �rst step 2 indices get \occupied" and at each step one more index is \occupied".Thus there exists a sequence of k di�erent indices n1; n2; : : : ; nk 2 f1; : : : ; kg such that�(i)ni = 1, �(i)ni+1 = �1, �(i)n = 0 for n 6= ni; ni+1, i = 1; : : : ; k � 1. Solving the system (4.1),we see that �(i)ni = �(i)ni+1 = � � � = �ni+1�1 = 1, �(i)n = 0 for n 6= ni; : : : ; ni+1 � 1. Hence,the con�guration ~� is a permutation of the con�guration �1 such that ~�n = i, i� �1ni = i,i = 1; : : : ; k.Let us now turn to the case l > 1. We use induction. Consider kl�1 possible columns. Wedenote linear combinations of them by �(i)� , � = 1; : : : ; kl�1. Then for any i = 1; : : : ; k � 1,the following system should have a solution�(i)� + �(i)1 = ~�(i)1;��(i)� � �(i)1 + �(i)2 = ~�(i)2;��(i)� � �(i)2 + �(i)3 = ~�(i)3;�� � � = � � ��(i)� � �(i)k�2 + �(i)k�1 = ~�(i)k�1;��(i)� � �(i)k�1 =~�(i)k;�: (4:4)



Number partitioning 21It follows that 2�(i)1 � �(i)2 =~�(i)1;� � ~�(i)2;���(i)1 + 2�(i)2 � �(i)3 =~�(i)2;� � ~�(i)3;�;� � � = � � ���(i)k�2 + 2�(i)k�1 =~�(i)k�1;� � ~�(i)k;�: (4:5)Given ~�(i)1;��~�(i)2;�; : : : ; ~�(i)k�1;��~�(i)k;�, this system (4.5) of k�1 equations has a unique solution,which does not depend on � = 1; : : : ; kl�1. Then ~�(i)1;� � ~�(i)2;�; : : : ; ~�(i)k�1;� � ~�(i)k;� should notdepend on � neither. We denote by Æ(i)j = ~�(i)j;� � ~�(i)j+1;�.Let us consider two cases. In the �rst case we assume that, for some i = 1; : : : ; k � 1and for some j = 1; : : : ; k � 1, Æ(i)j 6= 0. Then it may take values �1;�2. Knowing eachof these values, we can reconstruct in a unique way ~�(i)j;� = ~�(i)j and ~�(i)j+1;� = ~�(i)j+1, whichdo not depend on �. (If Æ(i)j = 1, then ~�(i)j = 1 and ~�(i)j+1 = 0, if ~Æ(i)j = �1, then ~�(i)j = 0and ~�(i)j+1 = �1 etc.). Then we can reconstruct the values ~�(i)t;� = ~�(i)j + Pj�1m=t Æ(i)m fort = 1; : : : ; j � 1, ~�(i)t;� = ~�(i)j �Pt�1m=j Æ(i)j for t = j + 1; : : : ; k, which consequently do notdepend on �. Since the sum of all kl left-hand sides of equations (4.4) equals zero, it followsthat P�Pkj=1 ~�(i)j;� = 0. But, since ~�(i)j;� = ~�(i)j , it follows that Pkj=1 ~�(i)j = 0. Thus,�(i)� = 1k Pkj=1 �(i)j;� = 1k Pkj=1 ~�(i)j = 0 for all �.The sequence ~�(i)1 ; : : : ; ~�(i)k being not constant andPkj=1 ~�(i)j = 0, it follows that for somej1; j2, ~�(i)j1 = 1 and ~�(i)j2 = �1. Using (4.2) and (4.3), we see that ~�(i+1)j1 = 0 and ~�(i+1)j2 = 1.Therefore, for some j = 1; : : : ; k� 1 Æ(i+1)j 6= 0, so that we may apply the previous reasoningto the con�guration ~�(i+1). We get that the values ~�(i+1)j;� do not depend on � and that�(i+1)� = 0, for all �. Applying the analogues of (4.2) and (4.3) backwards, namely~�(j)n = �1 =) ~�(j�1)n = 0; ~�(j�2)n = 0; : : : ; ~�(1)n = 0; (4:6)~�(j)n = 1 =) ~�(j�1)n = �1; ~�(j�2)n = 0; : : : ; ~�(1)n = 0; (4:7)we �nd that ~�(i�1)j1 = �1 and ~�(i�1)j2 = 0. Thus, for some j = 1; : : : ; k�1, Æ(i�1)j 6= 0 and so wemay apply the previous reasoning to the con�guration ~�(i�1). Hence, ~�(i�1)j;� does not dependon � and �(i�1)� = 0 for all �. Continuing this reasoning subsequently for ~�(i+2); : : : ; ~�(k)and backwards for ~�(i�2); : : : ; ~�(1), we derive that none of the values ~�(s)j;� depends on � andthat �(s)� = 0 for all � and all s = 1; : : : ; k. But the system �(s)� = 0 for all s = 1; : : : ; k � 1and � = 1; : : : ; kl�1 has only the trivial solution. Hence the system (4.4) becomes thesystem (4.1). Invoking the reasoning for l = 1, we derive that ~� is a permutation of the lastcon�guration �l.



22 Section 4Let us now turn to the second case, that is assume that for all i; j Æ(i)j = 0. Then theunique solution of (4.5) is �(i)1 = � � � = �(i)k�1 = 0. Then ~�(i)1;� = ~�(i)2;� = � � � = ~�(i)k;� = ~�(i)� forall � = 1; : : : ; kl�1 and all i = 1; : : : ; k� 1. The system (4.4) is reduced to a smaller system�(i)� = ~�(i)� corresponding to the matrix C(�1; : : : ; �l�1) with all kl�1 di�erent columns. Thestatement of the lemma holds for it by induction. Thus in this case ~� is a permutation ofone of �1; : : : ; �l�1. }Proof of Lemma 3.3. Let us remove from the matrix C(�1; : : : ; �l) linearly dependent columnsand leave only r columns of the basis. They correspond to a certain subset of r con�gurations�j;(�) j; � 2 Ar � f1; : : : ; lg � f1; : : : ; k � 1g, jArj = r. We denote by �Cr(�1; : : : ; �l) theN � r matrix composed by them. Then the probability in the right-hand side of (3.12) isnot greater than the probability of the same events for j; � 2 Ar only. Let �f�1;::: ;�lN (ft�;jg),j; � 2 Ar, be the characteristic function of the vector (2(N=k)varX)�1=2fY �(�j)gj;�2Ar .Then P�8� = 1; : : : ; k� 1; 8j = 1; : : : ; l jY �(�j)jp2(N=k)varX < c�jS(k;N) 1k�1 �� 1(2�)r limD!1 Z[�D;D]r �f�1;::: ;�lN (ft�;jg) Yj;�2Ar eit�;jc�j S(k;N) �1k�1 � e�it�;j c�j S(k;N) �1k�1it�;j dt�;j :(4:8)To bound the integrand in (4.8) we use that���eit�;jc�j S(k;N) �1k�1 � e�it�;j c�j S(k;N) �1k�1it�;j ��� � min�2c�j S(k;N) �1k�1 ; 2(t�;j)�1�: (4:9)Next, let us choose in the matrix �Cr(�1; : : : ; �l) any r linearly independent rows and constructof them a r � r matrix �Cr�r. Thenj �f�1;::: ;�lN (ft�;jg)j = NYn=1 ���E exp � iXnp2(N=k)varX f �Cr(�1; : : : ; �l)~tgn����� rYs=1 ���E exp � iXsp2(N=k)varX f �Cr�r~tgs����� rYs=1min�1; 2p2(N=k)varX(f �Cr�r~tgs)�1�; (4:10)where ~t = ft�;jgj;�2Ar . Hence, the absolute value of the integral (4.8) is bounded by the sumof two termsS(N; k) �rk�1 Q�;j2Ar(2cj�)(2�)r Zk~tk<S(k;N) 1k�1 rYs=1min�1; 2p2(N=k)varX(f �Cr�r~tgs)�1�dt�;j



Number partitioning 23+ 1(2�)r Zk~tk>S(k;N) 1k�1 Y�;j2Ar(2(t�;j)�1) rYs=1min�1; 2p2(N=k)varX(f �Cr�r~tgs)�1�dt�;j:(4:11)The change of variables ~� = �Cr�r~t in the �rst term shows that the integral over k~tk < S(k;N) 1k�1is at most O(Nr=2(lnS(k;N) 1k�1 )r), where lnS(k;N) 1k�1 = O(N) as N ! 1. Thusthe �rst term of (4.11) is bounded by K1( �Cr�r; k; l)N3r=2S(k;N) �rk�1 with some constan-t K1( �Cr�r; k; l) > 0 independent of N . Using the change of variables ~� = S(k;N) �1k�1~tin the second term of (4.11), one �nds that the integral over k~tk > S(k;N) 1k�1 is at mostO(S(k;N) �rk�1 ). Thus (4.11) is not greater than K2( �Cr�r; k; l)N3r=2S(k;N) �rk�1 with somepositive constant K2( �Cr�r; k; l) independent of N .To conclude the proof, let us recall the fact that there is a �nite, i.e. N -independent,number of possibilities to construct the matrix �Cr�r starting from C(�1; : : : ; �l) since eachof its elements may take only three values �1; 0. Thus there exists less than 3r2 di�erentconstants K2( �Cr�r; k; l) corresponding to di�erent matrices �Cr�r. It remains to take themaximal one over them to get (3.12). }Proof of Lemma 3.4. Throughout the proof we denote byDN[C(�) the matrixDN completedby the rows �(1); : : : ; �(k�1).Let us denote by c1; : : : ; cq the system of columns of the matrix DN . Then we can�nd the indices i1 < i2 < : : : < ik�t�1 � k � 1 such that �(is) is a linear combination ofc1; : : : ; cq; �(1); �(i2); : : : ; �(is�1) for all s = 1; : : : ; k�t�1. Then there exist linear coeÆcientsa1(s); : : : ; ais�1(s) such thata1(s)c1+� � �+aq(s)cq+aq+1(s)�(1)+� � �+ais�1(s)�(is�1) = �(is); s = 1; : : : ; k�t�1: (4:12)(If r < q these coeÆcients may be not unique, but this is not relevant for the proof.) Sincet � 1, without loss of generality (otherwise just make a permutation of spin values f1; : : : ; kgin �) we may assume that i1 > 1.Initially each of k � t � 1 systems (4.12) consists of N linear equations. But the numberof di�erent rows of DN being a �xed number R, each of these k � t � 1 systems (4.12) hasonly a �nite number of di�erent equations. Thus, (4.12) are equivalent to k� t� 1 �nite (i.e.N -independent) systems of di�erent equations of the form:a1(s)d1 + � � �+ aq(s)dq = aq+1(s)Æ1 + � � �+ ais�1(s)Æis�1 + Æis ; (4:13)where d = (d1; : : : ; dq) is one of the R distinct rows of the matrix DN and Æj = 0; 1;�1.



24 Section 4Note that there exist at most R� 3s of such equations (4.13) for any s = 1; : : : ; k� t� 1.Consequently, for the given matrix DN , there exists a �nite (i.e. N -independent) number ofsuch sets of k� t� 1 �nite systems of distinct equations (4.13). We will denote by A the setof such sets of k � t � 1 �nite systems of distinct equations (4.13) which do arise from somechoice of a spin con�guration � with rank [DN [ C(�)] = r + t, after the reduction of (4.12)(i.e. after eliminating the same equations among all N in each of k � t � 1 systems (4.12)).For � 2 �N , we denote by �(�) 2 A the set of k � t � 1 �nite systems of distinct equations(4.13) obtained from (4.12) in this way.We will prove that for any given element � 2 A we have the estimate:#f� : rank[DN [ C(�)] = r+ t; �(�) = �g � C (N(t+ 1)=k)!((N=k)!)t+1 (4:14)where C is a constant that depends only on R; t; k. Since the cardinality of A is �nite anddepends only on R; t, and k, this will prove the lemma.Consider some �0 2 A. Since by de�nition ofA there exists �0 with the property rank[DN[C(�0)] = r + t and �(�0) = �0, then there exists a solution of all these k � t � 1 systems ofequations �0. Let ai(s) be any such solution. For any row d = (d1; : : : ; dq) of DN , set�(s; d) = a1(s)d1 + a2(s)d2 + � � �aq(s)dq: (4:15)Then to any row d of DN there corresponds the vector of linear combinations �(d) =(�(1; d);�(2; d); : : : ;�(k � 1 � t; d)). Next, let us divide the set D of the R di�erent rowsof the matrix DN into m disjoint non-empty subsets D1;D2; : : : ;Dm such that two rows d; ~dare in the same subset, if and only if �(d) = �( ~d).Lemma 4.1: The partition Di de�ned above satis�es the following properties:(i) m � k � t(ii) For any pair d 2 Di, ~d 2 Dj, with i 6= j, and for any �, such that rank[DN [C(�)] = r+ tand �(�) = �0, the rows d and ~d can not be continued by the same row O of the matrix C(�)in DN [ C(�).Proof. Let us �rst show that D can be divided into three non-empty subsets D0, D1, D2, suchthat �(1; d) 6= �1; 0 for all d 2 D0, �(1; d) = �1 for d 2 D1, �(1; d) = 0 for d 2 D2. Firstof all, since �0 2 A, then there exists at least one �0 such that rank[DN [ C(�0)] = r + tand �(�0) = �0. Let d0; : : : ; dk�1 denote k rows (not necessarily di�erent) of DN that



Number partitioning 25are continued by the rows O0; : : : ; Ok�1 of the matrix C(�0) (recall the de�nition given inthe paragraph following (3.7)) respectively in DN [ C(�0). Now consider a row di1 that iscontinued by the row Oi1 . The corresponding equation (4.12) with s = 1 then reads�(1; di1) = �1:This shows that the set D1 6= ;. Similarly, for a row dj continued by the row Oj with j > i1,the corresponding equation yields �(1; dj) = 0:Thus D2 6= ;. Finally, consider the rows of the matrix DN continued by O0; : : : ; Oi1�1. Thecorresponding i1 equations (4.12) with s = 1 then read :�(d0; 1) = �aq+1�(d1; 1) = aq+1 � aq+2�(d2; 1) = aq+2 � aq+3� � � = � � ��(di1�1; 1) = aq+i1�1 + 1: (4:16)The sum of the right-hand sides of these equations equals 1. Thus the left-hand side of atleast one equation must be positive. Hence, there exists dj with j 2 f1; : : : ; i1� 1g such that�(dj ; 1) 6= �1; 0:Thus also D0 6= ;, and so all three sets de�ned above are non-empty. Moreover, D2 includesall rows d that are continued by the rows Oj with j > i1 of C(�0).Now, let us divide D2 into two non-empty subsets D2;1, D2;2 according to the value takenby �(2; d). We de�ne D2;1 � fd 2 D2 : �(2; d) 6= 0g, and D2;2 � fd 2 D2 : �(2; d) = 0g.Note that the row di2 is an element of D2 by the observation made above, while using (4.12)with s = 2, we get, as before that �(2; di2) = �1, and for all j > i2, �(2; dj) = 0. Thus D2;1and D2;2 are non-empty. In addition to that, for any row d continued by Oj with j > i2 wehave again by (4.12) with s = 2 �(2; dj) = 0. Hence, D2;1 and D2;2 are non-empty, and D2;2contains all rows d continued by Oj with j > i2 of C(�0).Using (4.12) for s = 3 we can again split D2;2 into two non-empty subsets D2;2;1 with�(d; 3) 6= 0 and D2;2;2 with �(d; 3) = 0. Furthermore, D2;2;2 contains all rows that arecontinued by Oj with j > i3 of C(�0), etc. The same procedure can be repeated up to the



26 Section 4step s = k�1� t�1. In this way we have subdivided D2 into k�1� t�1 disjoint non-emptysubsets. Together with D0 and D1, these constitute k � t disjoint subsets Di. This provesthe assertion (i).Let us now take any � such that rank [DN [ C(�)] = r + t and with �(�) = �0. Assumethat d and ~d are continued by the same row Oj of C(�) in DN [C(�). Since d and ~d belongto di�erent subsets Di, for some u 2 f1; : : : ; k � t � 1g, �(d; u) 6= �( ~d; u). Then, writing(4.12) with s = u along the row d continued by Oj and along the row ~d continued by Oj wewould get either the system �(d; u) = 0�( ~d; u) = 0if j > iu, or �(d; u) = �1�( ~d; u) = �1if j = iu, or �(d; u)� aq+j(u) = 1�( ~d; u)� aq+j(u) = 1if j = iu � 1, or �nally �(d; u)� aq+j(u) + aq+j+1(u) = 0�( ~d; u)� aq+j(u) + aq+j+1(u) = 0;if j < iu�1. But no one of these four systems has a solution if �(d; u) 6= �( ~d; u). This proves(ii). }By (ii) of Lemma 4.1, for any � such that rank [DN[C(�)] = r+t and �(�) = �0 the set ofrows of the matrix DN is divided into m � k� t non-empty disjoint subsets D1; : : : ;Dm andthe set of k rows of the matrix C(�) is divided into m non-empty disjoint subsets C1; : : : ; Cmof cardinalities s1; : : : ; sm � 1, respectively, such that the rows in Cj continue the rows of Djonly. But sj rows of the matrix C(�) must be present Nsj=k times. Thus, �rst of all, in thematrix DN , these rj rows must be present Nsj=k times as well, for all j = 1; : : : ; m. Thus,the number of con�gurations � with rank [DN [ C(�)] = r+ t such that �(�) = �0 does notexceed Qmj=1 �Nsj=kN=k ��N(sj�1)=kN=k � � � ��N=kN=k� = ((N=k)!)�kQmj=1(Nsj=k)! which is bounded by((N=k)!)�k((N(k�m+ 1)=k)!)((N=k)!)m�1 for any s1; : : : ; sm � 1 with s1 + � � �+ sm = k.By (i) of Lemma 4.1 we have k � t � m � k, so that((N(k�m+ 1)=k)!)((N=k)!)m�1((N=k)!)k = �N(k�m+ 1)=kN=k ��N(k �m)=kN=k � � � ��N=kN=k�



Number partitioning 27� �N(t+ 1)=kN=k ��Nt=kN=k � � � ��N=kN=k� = (N(t+ 1)=k)!((N=k)!)(t+1) :Hence, for any matrix DN composed of R di�erent columns#f� : rank [DN [ C(�)] = r + t; �(�) = �0g� � kXm=k�t Xr1;::: ;rm�1;r1+���+rm=R Xs1;::: ;sm�1;s1+���+sm=k ��N(t+ 1)=kN=k ��Nt=kN=k � � � ��N=kN=k� = C (N(t+ 1)=k)!((N=k)!)t+1 :(4:17)}Proof of Lemma 3.5 The statement (3.29) is an immediate consequence of (3.28) and (3.18),(3.4) if Æ > 0 is small enough.The proof of (3.27) and (3.28) mimics the standard proof of the Berry-Essen inequality.Namely, we use the representation (3.8) of f�1;::: ;�lN (ftjig) as a product of N characteristicfunctions where at most kl of them are di�erent. Each of them by standard Taylor expansionf�1;::: ;�lN;n (ft�;jg) = 1� � Pi=1;::: ;k�1j=1;::: ;l (1If�jn=ig � 1f�jn=i+1g)t�;j�24(N=k)varX varX��n i� Pi=1;::: ;k�1j=1;::: ;l (1If�jn=ig � 1f�jn=i+1g)t�;j�36((2N=k)varX)3=2 E(X � EX)3 � 1� rn (4:18)with j�nj < 1. It follows that jrnj < C1k~tk2N�1 + C2k~tk3N�3=2, for some C1; C2 > 0, all�1; : : : ; �l, and all n. Then jrnj < 1=2 and jrnj2 < C3k~tk3N�3=2, for some C3 > 0 and all~t satisfying k~tk < ÆpN , with Æ enough small. Thus, ln f�1 ;::: ;�lN;n (ft�;jg) = �rn + ~�nr2n=2(using the expansion ln(1 + z) = z + ~�z2=2 for kzk < 1=2 with k~�k < 1) , with some j~�nj < 1for all �1; : : : ; �l, all n, and all t satisfying k~tk < ÆpN . It follows that f�1;::: ;�lN (ft�;jg) =exp(�PNn=1 rn +PNn=1 ~�nr2n=2). Here �PNn=1 rn = �~tBN (�1; : : : ; �l)~t=2 +PNn=1 pn wherejpnj � C2k~tk3N�3=2. Thenf�1;::: ;�lN (ft�;jg) = e�~tBN (�1;::: ;�l)~t=2ePNn=1(pn+~�nr2n=2); (4:19)where jpnj+j~�nr2n=2j � (C2+C3=2)k~tk3N�3=2. Hence jePNn=1(pn+~�nr2n=2)�1j � C4k~tk3N�1=2,for all ~t satisfying k~tk < �N1=6 with � > 0 small enough. Moreover, jPNn=1(pn + ~�nr2n=2)j �C5k~tk3N�1=2, which implies (3.28). This concludes the proof of Lemma 3.5 }



28 Section 55. The unrestricted partioning problem.In the previous section we considered the state space of spin con�gurations where thenumber of spins taking each of k values is exactlyN=k. Here we want to discuss what happensif all partitions are permitted. Naturally, we divide again the space of all con�gurationsf1; : : : ; kgN into equivalence classes obtained by permutations of spins. Thus our state space~�N has kN (k!)�1 elements. Let us de�ne the random variables Y �(�) as in the previoussection, see (1.4). Then we may state the following conjecture analogous to Theorem 1.1.Conjecture 5.1: Let~V �(�) = kN=(k�1)N�1=2k1=2(k!)�1=(k�1)��1=2p3jY �(�)j; � = 1; : : : ; k� 1: (5:1)Then the point process on Rk�1+ X�2~�N Æ( ~V 1(�);::: ;~V k�1(�))converges to the Poisson point process on Rk�1+ with the intensity measure which is theLebesgue measure.Using Theorem 2.1, the assertion of the conjecture would be an immediate consequence ofthe following conjecture, that is the analogue of Proposition 3.1.Conjecture 5.2: Denote by P�1;::: ;�l2�N (�) the sum over all possible ordered sequences ofdi�erent elements of �N . Then for any l = 1; 2; : : : ; any constants c�j > 0, j = 1; : : : ; l,� = 1; : : : ; k� 1 we have:X�1;::: ;�l2�N P�8� = 1; : : : ; k � 1; 8j = 1; : : : ; l jY �(�j)jp2(N=k)varX < c�j(k!)�1=(k�1)kN=(k�1) �! Yj=1;::: ;l�=1;::: ;k�1 2c�jpvarXp2�E(X2) : (5:2)Remark: One can notice the di�erence between the right-hand sides of (3.2) and (5.2).In spite of this di�erence, the proof of this statement proceeds along the same lines asthat of Proposition 3.1. The only point that we were not able to complete is that thesum analogous to J2N in (3.10) (recall that it is a sum over sets �1; : : : ; �l such that thesystem fY �(�j)g j=1;::: ;l;�=1;:::k�1 is linearly dependent and, moreover, for any basis of this system



Number partitioning 29there exists a number j 2 f1; : : : ; lg such that for some non-empty subset of coordinates� 2 f1; : : : ; k � 1g the random variables Y �(�j) are included in this basis and for somenon-empty subset of coordinates � 2 f1; : : : ; k � 1g they are not included there) convergesto 0 as N !1. Therefore the whole statement remains a conjecture.Remark: The case k = 2. In the case k = 2 the sum J2N is absent. Hence, in this casewe can provide an entire proof of (5.2) and therefore prove our conjecture. The result in thecase k = 2 is not new: it has been already established by Ch. Borgs, J. Chayes and B. Pittelin [BCP], Theorem 2.8. Our Theorem 2.1 gives an alternative proof for it via (5.2).Finally we sketch the arguments that should lead to (5.2) and explain the di�erences with(3.2). To start with, similarly to (3.9), we splitX�1;::: ;�l2~�NrankC(�1;::: ;�l)=(k�1)l P(�)+ X�1;::: ;�l2~�NrankC(�1;::: ;�l)<(k�1)l P(�): (5:3)We are able to prove that the �rst part of (5.3) converges to the left-hand side of (5.2). Forthat purpose, we introduce again \the main part" of the state space with � 2 (0; 1=2):~R�l;N = n�1; : : : ; �l 2 �N : 81 � j � l; 81 � i < r � l; 1 � �; ; � � k; � 6= ��� NXn=1 1I�jn=� �N=k��� < N�pN; ��� NXn=1(1If�in=�g � 1If�in=g)1If�rn=�g��� < N�pNo (5:4)where k ~R�l;Nk � kNl(1� exp(�hN2�))(k!)�l (5:5)and split the �rst term of (5.3) into two termsX�1;::: ;�l2 ~R�l;N P(�)+ X�1;::: ;�l 62 ~R�l;NrankC(�1;::: ;�l)=(k�1)l P(�): (5:6)The second term of (5.6) converges to zero exponentially fast: the number of con�gurationsin it is at most O(exp(�hN2�)kNl) by (5.5), while the probability P(�) = O(N lk�Nl) by theanalogue of Lemma 3.3.To treat the �rst term of (5.3), let us stress that an important di�erence compared tothe previous sections is the fact that the variables Y �(�) are now not necessarily centered.Namely,EY �(�) = (EX) NXn=1(1If�n=�g � 1If�n=�+1g) = EX [#fn : �n = �g �#fn : �n = � + 1g](5:7)



30 Section 0as it may happen that #fn : �n = �g 6= #fn : �n = � + 1g.Taking this observation into account and proceeding similarly to the analysis of (3.21), wecan show that, uniformly for all �1; : : : ; �l 2 ~R�l;N ,P(�) = k�Nl(k!)lQj;�(2c�j )(2�)(k�1)l=2 exp� � E~Y �jp2(N=k)varX B�12 E~Y �jp2(N=k)varX �+ o(k�Nl) (5:8)where the matrix B consists of l diagonal blocks (k� 1)� (k� 1), each block having 1 on thediagonal, �1=2 on the line under the diagonal and 0 everywhere else. Thus the �rst term of(5.6) by (5.8) and (5.5) equalsX�1;::: ;�l2 ~R�l;N k�Nl(k!)lQj;�(2c�j )(2�)(k�1)l=2 exp�� E~Y �jp2(N=k)varX B�12 E~Y �jp2(N=k)varX� + o(1)= Qj;�(2c�j )(2�)(k�1)l=2E�1;::: ;�l exp� � E~Y �jp2(N=k)varX B�12 E~Y �jp2(N=k)varX �+ o(1): (5:9)By the Central Limit Theorem the vectorPNn=1(1If�jn=�g� 1If�jn=�+1g)=p2N=k on ~�
lN con-verges to a Gaussian vector Z�j with zero mean and covariance matrix B as N !1. Hence,(5.9) converges toQj;�(2c�j )(2�)(k�1)l=2 EZ exp� � EXpvarX ~Z�j B�12 ~Z�j EXpvarX� =Yj;� 2c�jpvarXp2�p(EX)2 + varX (5:10)which is the right-hand side of (5.2). This �nishes the analysis of the �rst term of (5.3).To treat the second term, we split it into two parts J1N and J2N analogously to (3.10).The analysis of J1N is exactly the same as in the proof of Proposition 3.1 and relies onLemmatas 3.3 and 3.2.However, the problem with the sum J2N persists. First of all, this sum contains muchmore terms than in the case of the previous section as it consists essentially of con�gurations�1; : : : ; �l where some of the values of spins � among f1; : : : ; kg �gure out more often thanothers, i.e. #fn : �n = �g > #fn : �n = � + 1g. Lemma 3.4 is not valid anymore. Second,for all such con�gurations �, the random variables Y �(�) are not centered and consequentlythe estimate of the probability P(�) suggested by Lemma 3.3 is too rough. We did not manageto complete the details of this analysis.References.
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