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Abstract: Recently, Bauke and Mertens conjectured that the local statistics of ener-
gies in random spin systems with discrete spin space should, in most circumstances, be
the same as in the random energy model. Here we give necessary conditions for this
hypothesis to be true, which we show to be satisfied in wide classes of examples: short
range spin glasses and mean field spin glasses of the SK type. We also show that, under
certain conditions, the conjecture holds even if energy levels that grow moderately with
the volume of the system are considered.

1. Introduction

In a recent paper [BaMe], Bauke and Mertens have formulated an interesting conjecture
regarding the behaviour of local energy level statistics in disordered systems. Roughly
speaking, their conjecture can be formulated as follows. Consider a random Hamilto-
nian, HN(σ), i.e., a real-valued random function on some product space, S�N , where S
is a finite set, typically S = {−1, 1}, of the form

HN(σ) =
∑

A⊂�N

�A(σ), (1.1)

where �N are finite subsets of Z
d of cardinality, say, N . The sum runs over subsets, A,

of �N and �A are random local functions, typically of the form

�A(σ) = JA

∏

x∈A

σx, (1.2)
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where JA, A ⊂ Z
d , is a family of (typically independent) random variables, defined

on some probability space, (�, F, P), whose distribution is not too singular. In such a
situation, for typical σ , HN(σ) ∼ √

N , while supσ HN(σ) ∼ N . Bauke and Mertens
then ask the following question: Given a fixed number, E, what is the statistics of the
values N−1/2HN(σ) that are closest to this number, and how are configurations, σ , for
which these good approximants of E are realised, distributed on S�N ? Their conjec-
tured answer, which at first glance seems rather surprising, is quite simple: find δN,E

such that P(|N−1/2HN(σ) − E| ≤ bδN,E) ∼ |S|−Nb; then, the collection of points,
δ−1
N,E |N−1/2HN(σ) − E|, over all σ ∈ S�N , converges to a Poisson point process on

R+. Furthermore, for any finite k, the k-tuple of configurations, σ 1, σ 2, . . . , σ k , where
the k-best approximations are realised, is such that all of its elements have maximal
Hamming distance between each other. In other words, the asymptotic behavior of these
best approximants of E is the same, as if the random variables HN(σ) were all inde-
pendent Gaussian random variables with variance N , i.e., as if we were dealing with the
random energy model (REM) [Der1]. Bauke and Mertens call this “universal REM like
behaviour”.

Mertens previously proposed such a conjecture in the special case of the number
partitioning problem[Mer1]. In that case, the function HN is simply given by

HN(σ) =
N∑

i=1

Xiσi, (1.3)

with Xi i.i.d. random variables uniformly distributed on [0, 1], σi ∈ {−1, 1}, and one
is interested in the distribution of energies near the value zero (which corresponds to
an optimal partitioning of the N random variables, Xi , into two groups such that their
sum in each group is as similar as possible). In this case, his conjecture was proven to
hold by Borgs, Chayes, and Pittel [BCP] and the same authors with Mertens [BCMP].
It should be noted that in this problem, one needs, of course, take care of the symmetry
of the Hamiltonian under the transformation σ → −σ . An extension of this result in the
spirit of the REM conjecture was proven recently in [BCMN], i.e., when the value zero
is replaced by an arbitrary value, E.

In [BK2] we generalised this result to the case of the k-partitioning problem, where the
random function to be considered is vector-valued (consisting of the vector of differences
between the sums of the random variables in each of the k subsets of the partition). To be
precise, we considered the special case where the subsets of the partition are required to
have the same cardinality, N/k (restricted k-partitioning problem). The general approach
to the proof we developed in that paper sets the path towards the proof of the conjecture
by Bauke and Mertens that we will present here.

The universality conjecture suggests that correlations are irrelevant for the properties
of the local energy statistics of disordered systems for energies near “typical energies”.
On the other hand, we know that correlations must play a rôle for the extremal ener-
gies near the maximum of HN(σ). Thus, there are two questions beyond the original
conjecture that naturally pose themselves: (i) assume we consider instead of fixed E,
N -dependent energy levels, say, EN = NαC. How fast can we allow EN to grow for the
REM-like behaviour to hold? and (ii) what type of behaviour can we expect once EN

grows faster than this value? We will see that the answer to the first question depends on
the properties of HN , and we will give an answer in models with Gaussian couplings.
The answer to question (ii) requires a detailed understanding of HN(σ) as a random
process, and we will be able to give a complete answer only in the case of the GREM,
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when HN is a hierarchically correlated Gaussian process. This will be discussed in a
companion paper [BK3].

Our paper will be organized as follows. In Chapter 2, we prove an abstract theorem,
that implies the REM-like-conjecture under three hypothesis. This will give us some
heuristic understanding why and when such a conjecture should be true. In Chapter 3
we then show that the hypothesis of the theorem are fulfilled in two classes of examples:
p-spin Sherrington-Kirkpatrick like models and short range Ising models on the lattice.
In both cases we establish conditions on how fast EN can be allowed to grow, in the case
when the couplings are Gaussian.

Note added. After this paper was submitted, Borgs et al. published an interesting pre-
print [BCMN2] where the following results were obtained: (i) In the p-spin SK models,
with p = 1, 2, our growth conditions on EN are optimal, i.e. for EN ∼ CN1/4 (p = 1),
resp. EN ∼ CN1/2 (p = 2), the REM conjecture cannot hold, at least if c is small
enough. They also extended our results in these examples to the case of non-Gaussian
interactions, provided they have some finite exponential moments.

2. Abstract Theorems

In this section we will formulate a general result that implies the REM property under
some concise conditions, that can be verified in concrete examples. This will also allow
us to present the broad outline of the structure of the proof without having to bother with
technical details.

Our approach to the proof of the Mertens conjecture is based on the following theo-
rem, which provides a criterion for Poisson convergence in a rather general setting.

Theorem 2.1. Let Vi,M ≥ 0, i ∈ N, be a family of non-negative random variables
satisfying the following assumptions: for any � ∈ N and all sets of constants bj > 0,
j = 1, . . . , �,

lim
M↑∞

∑

(i1,...,i�)⊂{1,...,M}
P(∀�

j=1 Vij ,M < bj ) →
�∏

j=1

bj , (2.1)

where the sum is taken over all possible sequences of different indices (i1, . . . , i�). Then
the point process

PM =
M∑

i=1

δVi,M
, (2.2)

on R+, converges weakly in distribution, as M ↑ ∞, to the standard Poisson point pro-
cess, P on R+ (i.e., the Poisson point process whose intensity measure is the Lebesgue
measure).

Remark. Theorem 2.1 was proven (in a more general form, involving vector valued
random variables) in [BK2]. It is very similar in its spirit to an analogous theorem for
the case of exchangeable variables proven in [BM] in an application to the Hopfield
model. The rather simple proof in the scalar setting can be found in Chapter 13 of [Bo].
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Naturally, we want to apply this theorem with Vi,M given by |N−1/2HN(σ) − EN |,
properly normalised.

We will now introduce a setting in which the assumptions of Theorem 2.1 are veri-
fied. Consider a product space SN where S is a finite set. We define on SN a real-valued
random process, YN(σ). Assume for simplicity that

EYN(σ) = 0, E(YN(σ ))2 = 1. (2.3)

Define on SN ,

bN(σ, σ ′) ≡ cov(YN(σ ), YN(σ ′)). (2.4)

Let us also introduce on SN the Gaussian process, ZN , that has the same mean and the
same covariance matrix as YN .

Let G be the group of automorphisms on SN , such that, for g ∈ G, YN(gσ) = YN(σ),
and let F be the larger group, such that, for g ∈ F , |YN(gσ)| = |YN(σ)|. Let

EN = cNα, c, α ∈ R, 0 ≤ α < 1/2, (2.5)

be a sequence of real numbers, that is either a constant, c ∈ R, if α = 0, or converges
to plus or minus infinity, if α > 0. We will define sets 	N as follows: If c 
= 0, we
denote by 	N the set of residual classes of SN modulo G; if c = 0, we let 	N be the
set of residual classes modulo F . We will assume throughout that |	N | > κN , for some
κ > 1. Set

δN =
√

π
2 eE2

N/2|	N |−1. (2.6)

Note that for α < 1/2, δN is exponentially small in N . δN is chosen such that, for any
b ≥ 0,

lim
N↑∞

|	N |P(|ZN(σ) − EN | < bδN) = b. (2.7)

For � ∈ N, and any collection, σ 1, . . . , σ � ∈ 	⊗�
N , we denote by BN(σ 1, . . . , σ �) the

covariance matrix of YN(σ), with elements

bi,j (σ
1, . . . , σ �) ≡ bN(σ i, σ j ). (2.8)

Assumption A. (i) Let Rη
N,� denote the set

Rη
N,� ≡ {(σ 1, . . . , σ �) ∈ 	⊗�

N : ∀1≤i<j≤� |bN(σ i, σ j )| ≤ N−η}. (2.9)

Then there exists a continuous decreasing function, ρ(η) > 0, on ]η0, η̃0[ (for some
η̃0 ≥ η0 > 0), and µ > 0, such that

|Rη
N,�| ≥

(
1 − exp

(
−µ(η)Nρ(η)

))
|	N |�. (2.10)

(ii) Let � ≥ 2, r = 1, . . . , � − 1. Let

L�
N,r =

{
(σ 1, . . . , σ �) ∈ 	⊗�

N : ∀1≤i<j≤� |YN(σ i)| 
= |YN(σ j )|,

rank(BN(σ 1, . . . , σ �)) = r
}
. (2.11)

Then there exists dr,� > 0, such that, for all N large enough,

|L�
N,r | ≤ |	N |re−dr,�N . (2.12)
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(iii) For any � ≥ 1, any r = 1, 2, . . . , �, and any b1, . . . , b� ≥ 0, there exist con-
stants, pr,� ≥ 0 and Q < ∞, such that, for any σ 1, . . . , σ � ∈ 	⊗�

N for which
rank(BN(σ 1, . . . , σ �)) = r ,

P
(∀�

i=1 : |YN(σ i) − EN | < δNbi

) ≤ Qδr
NNpr,� . (2.13)

Theorem 2.2. Assume Assumptions A hold. Assume that α ∈ [0, 1/2[ is such that, for
some η1 ≤ η2 ∈]η0, η̃0[, we have:

α < η2/2, (2.14)

α < η/2 + ρ(η)/2, ∀η ∈]η1, η2[, (2.15)

and

α < ρ(η1)/2. (2.16)

Furthermore, assume that, for any � ≥ 1, any b1, . . . , b� > 0, and (σ 1, . . . , σ �) ∈ Rη1
N,�,

P

(
∀�

i=1 : |YN(σ i) − EN | < δNbi

)
= P

(
∀�

i=1 : |ZN(σ i) − EN | < δNbi

)

+o(|	N |−�). (2.17)

Then, the point process,

PN ≡
∑

σ∈	N

δ{δ−1
N |YN (σ)−EN |} → P (2.18)

converges weakly, as N ↑ ∞, to the standard Poisson point process P on R+.
Moreover, for any ε > 0 and any b ∈ R+,

P
(∀N0∃N≥N0 : ∃σ,σ ′:|bN (σ,σ ′)|>ε : |YN(σ) − EN | ≤ |YN(σ ′) − EN | ≤ δNb

) = 0.

(2.19)

Remark. Before giving the proof of the theorem, let us comment on the various assump-
tions.

(i) Assumption A (i) holds with some η in any reasonable model, but the function
ρ(η) is model dependent.

(ii) AssumptionsA (ii) and (iii) are also apparently valid in most cases, but can be tricky
sometimes. An example where (ii) proved difficult is the k-partitioning problem,
with k > 2 [BK2].

(iii) Condition (2.19) is essentially a local central limit theorem. In the case α = 0 it
holds, if the Hamiltonian is a sum over independent random interactions, under
mild decay assumptions on the characteristic function of the distributions of the
interactions. Note that some such assumptions are obviously necessary, since if the
random interactions take on only finitely many values, then also the Hamiltonian
will take values on a lattice, whose spacings are not exponentially small, as would
be necessary for the theorem to hold. Otherwise, if α > 0, this will require further
assumptions on the interactions. We will leave this problem open in the present
paper. It is of course trivially verified, if the interactions are Gaussian.
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Proof. We just have to verify the hypothesis ofTheorem 2.1, forVi,M given by δ−1
N |YN(σ)

− EN |, i.e., we must show that
∑

(σ 1,...,σ �)∈	⊗l
N

P

(
∀�

i=1 : |YN(σ i) − EN | < biδN

)
→ b1 · · · b�. (2.20)

We split this sum into the sums over the set Rη1
N,� and its complement. First, by the

assumption (2.17)
∑

(σ 1,...,σ �)∈Rη1
N,�

P

(
∀�

i=1 : |YN(σ i) − EN | < biδN

)

=
∑

(σ 1,...,σ �)∈Rη1
N,�

P

(
∀�

i=1 : |ZN(σ i) − EN | < biδN

)
+ o(1). (2.21)

But, with C(EN) = {�x = (x1, . . . , x�) ∈ R
� : ∀�

i+1|EN − xi | ≤ δNbi},

P

(
∀�

i=1 : |ZN(σ i) − EN | < biδN

)
=

∫

C(EN )

e−(�z,B−1
N (σ 1,...,σ �)�z)/2

(2π)�/2
√

det(BN(σ 1, . . . , σ �))
d�z,

(2.22)

where BN(σ 1, . . . , σ �) is the covariance matrix defined in (2.8). Since δN is exponen-
tially small in N , we see that, uniformly for (σ 1, . . . , σ �) ∈ Rη1

N,�, the integral (2.22)
equals

(2δN/
√

2π)�(b1 · · · b�)e
−( �EN,B−1(σ 1,...,σ �) �EN)/2(1 + o(1)), (2.23)

where we denote by �EN the vector (EN, . . . , EN).
We treat separately the sum (2.21) taken over the smaller set, Rη2

N,� ⊂ Rη1
N,�, and the

one over Rη1
N,� \ Rη2

N,�.

Since, by (2.14), η2 is chosen such that E2
NN−η2 → 0, by (2.17), (2.22), and (2.23),

each term in the sum over Rη2
N,� equals

(2δN/
√

2π)�(b1 · · · b�)e
− 1

2 ‖EN‖2(1+O(N−η2 ))(1 + o(1))

= (b1 · · · b�)|	N |−�(1 + o(1)), (2.24)

uniformly for (σ 1, . . . , σ �) ∈ Rη2
N,l . Hence by Assumption A (i)

∑

(σ 1,...,σ �)∈Rη2
N,�

P

(
∀�

i=1 : |ZN(σ i) − EN | < biδN

)

= |Rη2
N,l ||	N |−�(b1 · · · b�)(1 + o(1))

→ b1 · · · bl. (2.25)

Now let us consider the remaining set Rη1
N,� \ Rη2

N,� (if it is non-empty, i.e., if η1 < η2),

and let us find η1 = η0 < η1 < · · · < ηn = η2, such that

α < ηi/2 + ρ(ηi+1)/2 ∀i = 0, 1, . . . , n − 1, (2.26)
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which is possible due to the assumption (2.15). Then let us split the sum over Rη1
N,l \Rη2

N,�

into n sums, each over Rηi

N,� \ Rηi+1
N,� , i = 0, 1, . . . , n − 1. By (2.17), (2.22), and (2.23),

we have, uniformly for (σ 1, . . . , σ �) ∈ Rηi

N,�,

P

(
∀�

i=1 : |ZN(σ i) − EN | < biδN

)
= (2δN/

√
2π)�(b1 · · · b�)e

− 1
2 ‖EN‖2(1+O(N−ηi

))

(1 + o(1))

≤ C|	N |−�eN2α−ηi

, (2.27)

for some constant C < ∞. Thus by Assumption A (i),

∑

Rηi
N,l\R

ηi+1
N,l

P(∀�
i=1 : |ZN(σ i) − EN | < biδN)

≤ C|	⊗l
N \ Rηi+1

N,l ||	N |−�eN2α−ηi

≤ C exp
(
−µ(ηi+1)Nρ(ηi+1) + N2α−ηi

)
,

(2.28)

that, by (2.26), converges to zero, as N → ∞, for any i = 0, 1, . . . , n − 1. So the sum
(2.21) over Rη1

N,l \ Rη2
N,l vanishes.

Now we turn to the sum over collections, (σ 1, . . . , σ �) 
∈ Rη1
N,l . We distinguish the

cases when det(BN(σ 1, . . . , σ �)) = 0 and det(BN(σ 1, . . . , σ �)) 
= 0. For the contribu-
tions from the latter case, using Assumptions A (i) and (iii), we get readily that,

∑

(σ1,...,σ�) 
∈Rη1
N�

rank(BN (σ1,...,σ�))=�

P

(
∀�

i=1 |YN(σ i) − EN | < δNbi

)
≤ |	N |�e−µ(η1)N

ρ(η1)

Q|δN |�Np�

≤ CNp� exp
(
−µ(η1)N

ρ(η1) + �E2
N/2

)
. (2.29)

The right-hand side of (2.29) tends to zero exponentially fast, if condition (2.16) is
verified.

Finally, we must deal with the contributions from the cases when the covariance
matrix is degenerate, namely

∑

(σ1,...,σ�)∈	
⊗l
N

rank(BN (σ1,...,σ�))=r

P(∀�
i=1 : |YN(σ i) − EN | < biδN), (2.30)

for r = 1, . . . , � − 1. In the case c = 0, this sum is taken over the set Lr
N,�, since σ

and σ ′ in 	N are different, iff |YN(σ)| 
= |YN(σ ′)|, by definition of 	N . In the case
c 
= 0, this sum is taken over �-tuples (σ 1, . . . , σ �) of different elements of 	N , i.e.,
such that YN(σ i) 
= YN(σ j ), for any 1 ≤ i < j ≤ �. But for all N large enough,
all terms in this sum over �-tuples, (σ 1, . . . , σ �), such that YN(σ i) = −YN(σ j ), for
some 1 ≤ i < j ≤ �, equal zero, since the events {|YN(σ i) − EN | < biδN } and
{| − YN(σ i) − EN | < bjδN }, with EN = cNα , c 
= 0, are disjoint. Therefore (2.30) is
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reduced to the sum over Lr
N,� in the case c 
= 0 as well. Then, by Assumptions A (ii)

and (iii), it is bounded from above by

|Lr
N,�|Q(δN)rNpr,� ≤ |	N |re−dr,�NQ(δN)rNpr,� ≤ Ce−dr,�Ne�E2

N/2Npr,� . (2.31)

This bound converges to zero exponentially fast, since E2
N = c2N2α , with α < 1/2.

This concludes the proof of the first part of the theorem.
The second assertion (2.19) is elementary: by (2.29) and (2.31), the sum of terms

P(∀2
i=1 : |YN(σ i)−EN | < δNb) over all pairs, (σ 1, σ 2) ∈ 	⊗2

N \Rη1
N,2, such that σ 1 
=

σ 2, converges to zero exponentially fast. Thus (2.19) follows from the Borel-Cantelli
lemma. ��

Finally, we remark that the results of Theorem 2.2 can be extended to the case when
EYN(σ) 
= 0, if α = 0, i.e., EN = c. Note that, e.g. the unrestricted number partitioning
problem falls into this class. Let now ZN(σ) be the Gaussian process with the same
mean and covariances as YN(σ). Let us consider both the covariance matrix, BN , and
the mean of YN , EYN(σ), as random variables on the probability space (	N, BN, Eσ ),
where Eσ is the uniform law on 	N . Assume that, for any � ≥ 1,

BN(σ 1, . . . , σ �)
D→ Id, N ↑ ∞, (2.32)

where Id denotes the identity matrix, and

EYN(σ)
D→ D, N ↑ ∞, (2.33)

where D is some random variable D. Let

δ̃N =
√

π
2 K−1|	N |−1, (2.34)

where

K ≡ Ee−(c−D)2/2. (2.35)

Theorem 2.3. Assume that, for some R > 0, |EYN(σ)| ≤ NR , for all σ ∈ 	N . Assume
that (2.10) holds for some η > 0 and that (ii) and (iii) of Assumptions A are valid. Assume
that there exists a set, QN ⊂ Rη

N,�, such that (2.17) is valid for any (σ 1, . . . , σ �) ∈ QN ,

and that |Rη
N,� \ QN | ≤ |	N |�e−Nγ

, with some γ > 0. Then, the point process

PN ≡
∑

σ∈	N

δ̃
δ−1
N |YN (σ)−EN | → P (2.36)

converges weakly to the standard Poisson point process P on R+ .

Proof. We must prove again the convergence of the sum (2.20), that we split into three
sums: the first over QN , the second over Rη

N,� \ QN , and the third over the complement
of the set Rη

N,�. By assumption, (2.17) is valid on QN , and thus the terms of the first
sum are reduced to

∫

∀i=1,...,�:|zi−c|<δ̃Nbi

e−((�z−E �YN (σ))B−1
N (σ 1,...,σ �)(�z−E �YN (σ)))/2

(2π)�/2
√

det(BN(σ 1, . . . , σ �))
d�z

= (2δ̃N/
√

2π)�(b1 · · · b�)e
−(�c−�EYN (σ))B−1(σ 1,...,σ �)(�c−E �YN (σ))/2(1 + o(1)),

(2.37)
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with �c ≡ (c, . . . , c), and E �YN(σ) ≡ (EYN(σ 1), . . . , EYN(σ �)), since δN is exponen-
tially small and |EYN(σ)| ≤ NR . By definition of δ̃N , the quantities (2.37) are at most
O(|	N |−�), while, by the estimate (2.10) and by the assumption on the cardinality of
Rη

N,� \ QN , the number of �-tuples of configurations in 	⊗l
N \ Rη

N,� and in Rη
N,� \ QN

is exponentially smaller than |	N |�. Hence
∑

(σ 1,...,σ �)∈QN

P(∀�
i=1 : |YN(σ i) − EN | < biδN)

=
∑

(σ 1,...,σ �)∈QN

(2δ̃N/
√

2π)�(b1 · · · b�)e
−(�c−�EYN (σ))B−1(σ 1,...,σ �)(�c−E �YN (σ))/2

×(1 + o(1)) + o(1)

=
∑

(σ 1,...,σ �)∈	⊗�
N

(2δ̃N/
√

2π)�(b1 · · · b�)e
−(�c−�EYN (σ))B−1(σ 1,...,σ �)(�c−E �YN (σ))/2

×(1 + o(1)) + o(1)

= b1 · · · b�

|	N |�K�

∑

(σ 1,...,σ �)∈	⊗�
N

e−(�c−�EYN (σ))B−1(σ 1,...,σ �)(�c−E �YN (σ))/2

×(1 + o(1)) + o(1). (2.38)

The last quantity converges to b1 · · · b�, by the assumptions (2.32), (2.33) and (2.35).
The sum of the probabilities, P(∀�

i=1 : |YN(σ) − EN | < δNbi), over all �-tuples of

Rη
N,� \ QN , contains at most |	N |�e−N−γ

terms, while, by Assumption A (iii), (and

since, for any (σ 1, . . . , σ �) ∈ Rη
N,�, the rank of BN(σ 1, . . . , σ �) equals �) each term is

at most of order |	N |−�, up to a polynomial factor. Thus this sum converges to zero.
Finally, the sum of the same probabilities over the collections (σ 1, . . . , σ �) ∈ 	⊗l

N \
Rη

N,� converges to zero, exponentially fast, by the same arguments as those leading to
(2.29) and (2.31), with η1 = η. ��

3. Examples

We will now show that the assumptions of our theorem are verified in a wide class
of physically relevant models: 1) the Gaussian p-spin SK models, 2) SK-models with
non-Gaussian couplings, and 3) short-range spin-glasses. In the last two examples we
consider only the case α = 0.

3.1. p-spin Sherrington-Kirkpatrick models, 0 ≤ α < 1/2. In this subsection we illus-
trate our general theorem in the class of Sherrington-Kirkpatrick models. Consider S =
{−1, 1}:

HN(σ) =
√

N√(
N
p

)
∑

1≤i1<i2<···<ip≤N

Ji1,...,ipσi1σi2 · · · σip (3.1)

is the Hamiltonian of the p-spin Sherrington-Kirkpatrick model, where Ji1,...,ip are inde-
pendent standard Gaussian random variables.

The following elementary proposition concerns the symmetries to the Hamiltonian.
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Proposition 3.1. Assume that, for any 0 < i1 < · · · < ip ≤ N , σi1 · · · σip = σ ′
i1

· · · σ ′
ip

.

Then, if p is even, either σi = σ ′
i , for all i = 1, . . . , N , or σi = −σ ′

i , for all
i = 1, . . . , N , and, if p is odd, then σi = σ ′

i , for all i = 1, . . . , N . Assume that,
for any 0 < i1 < · · · < ip ≤ N , σi1 · · · σip = −σ ′

i1
· · · σ ′

ip
. This is impossible, if p is

even and σi = −σ ′
i , for all i = 1, . . . , N , if p is odd.

This proposition allows us to construct the space	N : Ifp is odd and c 
= 0,	N = SN ,
thus |	N | = 2N . If p is even, or c = 0, 	N consists of equivalence classes where con-
figurations σ and −σ are identified, thus |	N | = 2N−1.

Theorem 3.2. Let p ≥ 1 be odd. Let 	N = SN . If p = 1 and α ∈ [0, 1/4[, and, if p = 3,

5, . . . ,, and α ∈ [0, 1/2[, for any constant c ∈ R \ {0} with δN = 2−Ne+c2N2α/2
√

π
2 ,

the point process

PN ≡
∑

σ∈	N

δ{δ−1
N |N−1/2HN(σ)−cNα |} (3.2)

converges weakly to the standard Poisson point process, P , on R+.
Let p be even. Let 	N be the space of equivalence classes of SN where σ and −σ

are identified. For any α ∈ [0, 1/2[ and any constant, c ∈ R, the point process

PN ≡
∑

σ∈	N

δ{(2δN )−1|N−1/2HN(σ)−cNα |} (3.3)

converges weakly to the standard Poisson point process, P , on R+. The result (3.3) holds
true as well in the case of c = 0, for p odd.

Proof of Theorem 3.2. We have to verify the assumptions of Theorem 2.2 for the process
N−1/2HN(σ) = YN(σ). The elements of the covariance matrix (2.8) are:

bj,j (σ
1, . . . , σ �) = 1, ∀�

j=1; (3.4)

bj,m(σ 1, . . . , σ �) =
(

N

p

)−1 ∑

1≤i1<i2<···<ip≤N

σ
j
i1

. . . σ
j
ip

σm
i1

. . . σm
ip

, ∀1≤j<m≤�. (3.5)

It has been observed in [BKL] that its non-diagonal elements can be written as

bj,m(σ 1, . . . , σ �) =
[p/2]∑

k=0

(−N)−k

(
2k

p

)
(k − 1)!!

(
1
N

N∑

q=1

σ
j
q σm

q

)p−2k

×(1 + O(1/N)). (3.6)

Now let us verify Assumption A (i). Let

Qζ
N,�,q =

{
(σ 1, . . . , σ l) ∈ 	⊗l

N : ∀1≤i<j≤�

∣∣∣N−1
N∑

q=1

σ i
qσ

j
q

∣∣∣ < qN−ζ
}
. (3.7)
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The �-tuples of this set satisfy the following property: for any δ2, . . . , δ� ∈ {−1, 1}�−1,
the sets of sites Aδ2,...,δ�

= {i : σ 2
i = δ2σ

1
i , σ 3

i = δ3σ
1
i , . . . , σ �

i = δ�σ
1
i } has the car-

dinality N2−(�−1) + O(N1−ζ ). Then it is an easy combinatorial computation to check
that there exists h > 0, such that, for any q ∈ R+, and any ζ ∈]0, 1/2[,

|Qζ
N,�,q | ≥ |	N |�(1 − exp(−hN1−2ζ )), (3.8)

for all N large enough. By the representation (3.6), we have
⋂p

k=0 Q−(k−η)/(p−2k)
N,�,q ⊂

Rη
N,�, with q = (p maxk=0,...,[p/2]

(2k
p

)
(k − 1)!!)−1. But, for any η ∈]0, p/2[, and any

k = 0, 1, . . . , [p/2], Q−(k−η)/(p−2k)
N,�,q ⊂ Q−(k+1−η)/(p−2(k+1))

N,�,q . Therefore,

Qη/p
N,�,q ⊂ Rη

N,�. (3.9)

Thus, due to (3.8), Assumption A (i) is verified with ρ(η) = 1 − 2η/p, for η ∈]0, p/2[.
Let us now check Assumption A (ii). To estimate the cardinality of Lr

N,�, we need

to introduce an � by
(
N
p

)
matrix, Cp(σ 1, . . . , σ �), as follows. For any given σ 1, . . . , σ �,

the j th column is composed of all
(
N
p

)
products, σ

j
i1
σ

j
i2

· · · σ j
ip

, over all subsets 1 ≤ i1

< i2 < · · · < ip ≤ N . Then we have

CT
p (σ 1, . . . , σ �)Cp(σ 1, . . . , σ �) =

(
N

p

)−1

BN(σ 1, . . . , σ �). (3.10)

Let σ 1, . . . , σ � be such that rank(BN(σ 1, . . . , σ �)) = r < �. Then, r columns of the
matrix Cp(σ 1, . . . , σ �) form a basis of its � columns. Assume that these are, e.g., the
first r columns. The matrix Cp(σ 1, . . . , σ r ) can contain at most 2r different rows. We
will show that, for any (σ 1, . . . , σ �) ∈ Lr

N,�, it can in fact not contain all 2r rows, due
to the following proposition. ��
Proposition 3.3. Assume that an 2r × r matrix, A, with elements, 1 or −1, consists of
all 2r different rows. Assume that a column of length 2r with elements 1 or −1 is a linear
combination of the columns of A. Then this column is a multiple (with coefficient +1 or
−1) of one of the columns of the matrix A.

Proof. The proof can be carried out by induction over r . A generalisation of this fact is
proven in [BK-npp].

Now, if the matrix Cp(σ 1, . . . , σ r ) contained all 2r rows, then, by Proposition 3.3,
for any j = r + 1, . . . , �, there would exist m = 1, . . . , r , such that, either, for any
0 < i1 < · · · < ip ≤ N , σ

j
i1

· · · σ j
ip

= σm
i1

· · · σm
ip

, or, for any 0 < i1 < · · · < ip ≤
N , σ

j
i1

· · · σ j
ip

= −σm
i1

· · · σm
ip

, which would imply |YN(σ j )| = |YN(σm)|. But this is
excluded by the definition of Lr

N,�.

Thus, for any (σ 1, . . . , σ �) ∈ Lr
N,�, the matrix Cp(σ 1, . . . , σ r ) contains at most

2r − 1 different rows. There are O((2r − 1)N) possibilities to construct such a matrix.
Furthermore, there is only an N -independent number of possibilities to complete it by
adding linear combinations of its columns to Cp(σ 1, . . . , σ �). To see this, consider the
restriction of Cp(σ 1, . . . , σ r ) to any r linearly independent rows. There are not more
than 2r(�−r) ways to complete it by (�−r) columns of ±1 of length r , that are linear com-
binations of its r columns. But each such choice determines uniquely linear coefficients
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in these linear combinations and hence the completion of the whole Cp(σ 1, . . . , σ r ) up
to Cp(σ 1, . . . , σ �). Thus |Lr

N,�| = O((2r − 1)N).

It remains to verify Assumption A (iii). This is easy: if rank(BN(σ 1, . . . , σ �)) = r ,
then r of the random variables YN(σ 1), . . . , YN(σ �) are linearly independent. Assume
that these are, e.g., YN(σ i1), . . . , YN(σ ir ). Then the covariance matrix BN(σ i1 , . . . , σ ir )

is non-degenerate, and the corresponding probability is bounded from above by

P(∀r
j=1|YN(σ ij ) − EN | < δNbij ) ≤ (2δN)r(bi1 · · · bir )√

(2π)rdet BN(σ i1 , . . . , σ ir )
. (3.11)

From the representation of the matrix elements of , BN(σ i1 , . . . , σ ir )), (3.5), one sees
that the determinant, (det BN(σ i1 , . . . , σ ir )), is a finite polynomial in the variables N−1,
and thus its inverse can grow at most polynomially.

Thus, we have established that Assumption A is verified. We now turn to conditions
(2.14), (2.15), and (2.16) on α. Since ρ(η) = 1 − 2η/p, for η ∈]0, p/2[, we should
find η1, η2 ∈]0, p/2[ such that α < η2/2, α < η/2 + 1/2 − η/p for η ∈]η1, η2[, and
α < 1/2 −η1/p. We see that, for any p ≥ 2 and α ∈]0, 1/2[, it is possible to fix η1 > 0
small enough, and η2 ∈]0, p/2[ close enough to 1, such that these assumptions are sat-
isfied. If p = 1, then such a choice is possible only for α ∈]0, 1/4[. The assumption
(2.17) need not be verified here as YN(σ) is a Gaussian process. ��

Remark. Values p = 1, α = 1/4. The value α = 1/4 is likely to be the true critical
value in the case p = 1. In this case, one can check that the principle part of our sum
gives a contribution of the form

const(1 + o(1))√
(2πN)k(k−1)/2

∑

m1,2,...,mk−1,k

∀i 
=j :|mi,j |<Nη−1/2

× exp
(
c2N2α

∑

1≤i<j≤N

mi,j (1 + o(1)) − N

2

∑

1≤i<j≤k

m2
i,j (1 + o(1))

)
, (3.12)

which in turn is easily seen to be of order (ec2/2)k(k−1)/2, that it it does not behave like a
constant to the power k1. Note that the term proportional to

√
N in the exponents arises

from the off-diagonal part of the covariance matrix BN .
If α > 1/4, the contribution from the (3.12) is already of order (eN4α−1c2/2)k(k−1)/2,

which cannot be compensated by any normalisation of the form δk
N . Thus at least the

conditions of Theorem 2.1 cannot hold in this case.
In the case p ≥ 2, corresponding observations apply when 1/4 is replaced by 1/2.

3.2. Generalized p-spin SK models at level α = 0. In this subsection we generalize
Theorem 3.2 to the case of non-Gaussian process in the case of non-zero mean and
α = 0. Let p ≥ 1, Ui1,i2,...,ip be any

(
N
p

)
i.i.d. random variables with EU = a and

1 After submission of our paper, a preprint by Borgs et al [BCMN2] appeared in which it was shown
that for α = 1/4, and c small enough, this is in fact the true behaviour and that this excludes convergence
to a Poisson process.
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Var U = 1. Let

HN(σ) =
√

N√(
N
p

)
∑

1≤i1<i2<···<ip≤N

Ui1,...,ipσi1σi2 · · · σip . (3.13)

Let φ(s) = Eeis(U−a) be the generating function of (U − a).

Assumption B. We will assume in this section that E|U |3 < ∞ and |φ(s)| = O(|s|−1),
as |s| → ∞.

Remark. The decay assumption on the Fourier transform is not optimal, but some con-
dition of this type is needed, as the result cannot be expected for discrete distributions,
where the number of possible values the Hamiltonian takes on would be finite.

We consider YN(σ) = N−1/2HN(σ). The state space 	N is defined as in the pre-
vious example. The covariance matrix, given by (3.6), converges in law to the identity
matrix by the law of large numbers. Furthermore, analogously to (3.6), we see that
EYN(σ) = Qp(N−1/2 ∑N

i=1 σi), where

Qp(x) =
[p/2]∑

k=0

(−1)k
(

2k

p

)
(k − 1)!!xp−2k. (3.14)

By the central limit theorem, EYN(σ)
D→ Qp(J ), where J is a standard Gaussian random

variable. Hence, (2.32) and (2.33) are verified and we may define the constant

Kp ≡ E exp
(

− (c − aQp(J ))2/2
)
. (3.15)

Then, δ̃N = K−1
p |	N |−1(

√
2π/2), with |	N | = 2N for p odd and |	N | = 2N−1 for p

even.

Theorem 3.4. (i) Let p be odd. Let 	N = SN . For any c 
= 0, the point process

PN ≡
∑

σ∈	N

δ{2NKp(2/
√

2π)|YN(σ) − c|} (3.16)

converges weakly to the standard Poisson point process on R+.
(ii) Let p be odd and c = 0, or let p be even and c 
= 0. Denote by 	N the space of the

2N−1 equivalence classes in SN , where σ and −σ are identified. Then the point
process

PN ≡
∑

σ∈	N

δ{2N−1Kp(2/
√

2π)|YN(σ) − c|}, (3.17)

converges weakly to the standard Poisson point process on R+.

Proof of Theorem 3.4. We should check the assumptions of Theorem 2.3. The Assump-
tions A (i), for any η ∈]0, p/2[, and (ii) have been already verified in the proof of
Theorem 3.2. We must check (iii) and also the assertion (2.17) on an appropriate subset
QN .



526 A. Bovier, I. Kurkova

We will use the construction of the matrix Cp(σ 1, . . . , σ �) explained in the proof of
Theorem 3.2, see (3.10). Let us introduce the Fourier transform

f σ 1,...,σ �

(t1, . . . , t�) = E exp
(
i[t1(YN(σ 1) − EYN(σ 1)) + · · · + tk(YN(σ k)

−EYN(σ �))]
)
. (3.18)

A simple computation shows that

f σ 1,...,σ �

(t1, . . . , t�) =
(N

p)∏

m=1

φ
((

N

p

)−1/2

{Cp(σ 1, . . . , σ �)�t}m
)
, (3.19)

where {Cp(σ 1, . . . , σ �)�t}m is the mth coordinate of the product of the matrix
Cp(σ 1, . . . , σ �) with the vector �t = (t1, . . . , t�). ��

Assumption A (iii) is valid due to the following proposition.

Proposition 3.5. There exists a constant, Q = Q(r, �, b1, . . . , b�) > 0, such that, for
any (σ 1, . . . , σ �) ∈ 	⊗�

N , any r ≤ �, if rank BN(σ 1, . . . σ �) = r ,

P

(
∀�

i=1 : |YN(σ i) − c| ≤ δ̃Nbi

)
≤ [̃δN ]rQNpr/2+1. (3.20)

Proof. Recall that it follows from the hypothesis that the rank of the matrix
Cp(σ 1, . . . , σ �) equals r . Let us remove from this matrix � − r columns such that
the remaining r columns are linearly independent. They correspond to a certain subset
of r configurations. Without loss of generality, we may assume that they are σ 1, . . . , σ r ,
i.e., we obtain the matrix Cp(σ 1, . . . , σ r ). Obviously,

P

(
∀�

i=1 : |YN(σ i) − c| ≤ δ̃Nbi

)
≤ P

(
∀r

j=1 : |YN(σ j ) − c| ≤ δ̃Nbi

)
. (3.21)

Then

P

(
∀�

i=1 : |YN(σ i) − c| ≤ δ̃Nbi

)

≤ 1

(2π)r
lim

D→∞

∫

[−D,D]r

∣∣f σ 1,...,σ r

N (t1, . . . , tr )
∣∣

r∏

j=1

eitj bj δ̃N − e−itj bj δ̃N

2itj
dtj . (3.22)

As δ̃N = O(2−N), the integrand in (3.22) is bounded by
∣∣∣∣∣
eitj bj δ̃N − e−itj bj δ̃N

2itj

∣∣∣∣∣ ≤ min
(
Q02−N, 2|tj |−1

)
, (3.23)

with a constant, Q0 = Q0(bj ). Next, let us choose in the matrix Cp(σ 1, . . . , σ r ) any
r linearly independent rows and construct from them an r × r matrix, C̄r×r . Then, by
(3.19) and by Assumption B on φ(s),

|f σ 1,...,σ r

N (�t)| ≤
r∏

j=1

∣∣∣∣∣φ
((

N

p

)−1/2

{C̄r×r�t}j
)∣∣∣∣∣

≤
r∏

j=1

min
(

1, Q̃0N
p/2

∣∣{�tC̄r×r}j
∣∣−1

)
, (3.24)
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with Q̃0 > 0. Hence, the absolute value of the integral (3.22) is bounded by the sum of
two terms,

Q0(b1) · · · Q0(br)2
−Nr

∫

‖�t‖<2Nr

r∏

j=1

min
(

1, Q̃0N
p/2

∣∣{C̄r×r�t}j
∣∣−1

)
dtj

+
∫

‖�t‖>2Nr

r∏

j=1

(2t−1
m )

r∏

j=1

min
(

1, Q̃0N
p/2

∣∣{C̄r×r�t}j
∣∣−1

)
dtj . (3.25)

Recall that the matrix C̄r×r has matrix elements ±1 and rank r . Since the total num-
ber of such matrices is at most 2r2

, the smallest absolute value of the determinant of
all such matrices is some positive number that does not depend on N , but only on r .
Therefore, the change of variables, �η = C̄r×r�t , in the first term shows that the integral
over ‖�t‖ < 2rN is of order at most Npr/2 ln 2rN ∼ Npr/2+1. Thus the first term of
(3.25) is bounded by Q12−NrNpr/2+1, with some constant Q1 < ∞. Using the change
of variables �η = 2−rN �t in the second term of (3.25), one can see that the integral over
‖�t‖ > 2Nr is bounded by Q22−NrNpr/2, with some constant Q2 < ∞. This concludes
the proof. ��

Finally, let us fix any η ∈]0, 1/2[ and introduce QN = Qη/p
N,�,q (defined in (3.7)) with

q = (p maxk=0,...,[p/2]
(2k

p

)
(k − 1)!!)−1. By (3.9) and (3.8), it is a subset of Rη

N,�, and

|	⊗�
N \QN | is smaller than 2N�e−hN1−2η

, with some h > 0. We need to verify (2.17) for
QN . We abbreviate

�WN ≡ v−1((c − EYN(σ 1)), . . . , (c − EYN(σ �))
)
. (3.26)

For any σ 1, . . . , σ � ∈ QN , we split

P(∀�
i=1|YN(σ i) − c| < biδ̃N ) =

4∑

m=1

Im
N (σ 1, . . . , σ �), (3.27)

where

I 1
N(σ 1, . . . , σ �) =

∫

R�

�∏

j=1

eitj bj δ̃N − eitj bj δ̃N

2itj
ei�t · �WN e−�tBN (σ 1,...,σ �)�t/2d�t

−
∫

‖�t‖≥εNp/6

�∏

j=1

eitj bj δ̃N − e−itj bj δ̃N

2itj
ei�t · �WN e−�tBN (σ 1,...,σ �)�t/2d�t,

(3.28)

I 2
N(σ 1, . . . , σ �) =

∫

‖�t‖<εNp/6

�∏

j=1

eitj bj δ̃N − e−itj bj δ̃N

2itj
ei�t · �WN

×(
f

σ 1,...,σ �

N (�t) − e−�tBN (σ 1,...,σ �)�t/2)d�t, (3.29)
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I 3
N(σ 1, . . . , σ �) =

∫

εNp/6<‖�t‖<δ
√

Np

�∏

j=1

eitj bj δ̃N − e−itj bj δ̃N

2itj
ei�t · �WN f

σ 1,...,σ �

N (�t)d�t,

(3.30)

and

I4
N(σ 1, . . . , σ �) = (2π)−� lim

D→∞

∫

[−D,D]�∩‖�t‖>δ
√

Np

�∏

j=1

eitj bj δ̃N − e−itj bj δ̃N

2itj
ei�t · �WN f

σ1,...,σ �

N (�t)d�t,

(3.31)

with some ε, δ > 0 to be chosen later.
The first part of I 1

N(σ 1, . . . , σ �) is exactly the quantity P(∀�
i=1 : |ZN(σ i) − c|

< biδ̃N ). Note that

∣∣∣
�∏

j=1

eitj bj δ̃N − e−tj bj δ̃N

2itj

∣∣∣ ≤ Q2−N�, (3.32)

with some Q < ∞. Then the second part of I 1
N is exponentially smaller than 2−�N , for all

(σ 1, . . . , σ �) ∈ QN . We must show that I 2
N, I 3

N, I 4
N are o(2−N�), for all (σ 1, . . . , σ �) ∈

QN . This is easy due to the following proposition.

Proposition 3.6. There exist constants, C < ∞, ε, θ, δ > 0, such that, for all
(σ 1, . . . , σ �) ∈ QN , the following estimates hold:

(i) For all ‖�t‖ < εNp/6,

∣∣f σ 1,...,σ �

N (�t) − e−�tBN (σ 1,...,σ �)�t/2
∣∣ ≤ C‖�t‖3

√
Np

e−�tBN (σ 1,...,σ �)�t/2. (3.33)

(ii) For all ‖�t‖ < δ
√

Np,

∣∣f σ 1,...,σ �

N (�t)∣∣ ≤ e−θ‖�t‖2
. (3.34)

Proof. The proof is elementary and completely analogous to the corresponding estimate
in the proof of the Berry-Essen inequality. All details are completely analogous to those
in the proof of Lemma 3.5 in [BK2] and therefore are omitted. ��

Using (3.33) and (3.32), we see that I 2
N(σ 1, . . . , σ l) = O(N−p/2)2−N�. The third

term, I 3
N(σ 1, . . . , σ l), is exponentially smaller than 2−N� by (3.34).

Finally, by (3.32) we may estimate I 4
N(σ 1, . . . σ �) roughly as

|I 4
N(σ 1, . . . σ �)| ≤ Q2−�N

∫

‖�t‖>δ
√

Np

|f σ 1,...,σ k

N (�t)|d�t, (3.35)

with some constant Q < ∞. By the construction of the set QN (3.7), for any
(σ 1, . . . , σ �) ∈ QN , the matrix C1(σ

1, . . . , σ �), (i.e., the matrix with N rows, the
kth row being σ 1

k , σ 2
k , . . . , σ �

k ), contains at least 2�−1 possible different rows, each row
being present at least 2−�N(1+o(1)) times. Consequently, each of these rows is present
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in the matrix Cp(σ 1, . . . , σ �) at least 2−�Np(1 + o(1)) times, for any p ≥ 2. Then,

by (3.19), f
σ 1,...,σ �

N (�t) is the product of at least 2�−1 different characteristic functions,
each is taken to the power at least 2−�Np(1 + o(1)). Let us fix from a set of different
rows of Cp(σ 1, . . . , σ �) � linearly independent ones, and denote by C̄ the square matrix

composed of them. Then there exists ζ(δ) > 0, such that
√�tC̄T C̄�t/v2 ≥ ζ , for all �t ,

with ‖�t‖ > δ. Changing variables �s = (
N
p

)−1/2
C̄�t in (3.35), one gets the bound

|I 4
N(σ 1, . . . , σ �)| ≤ Q2−�NNp�/2

∫

‖�s‖>ζ

�∏

m=1

∣∣φ(sm)
∣∣2−(�−1)Np(1+o(1))

dsm. (3.36)

Assumption B made on φ(s) implies that φ(s) is aperiodic, and thus |φ(s)| < 1, for any
s 
= 0. Moreover, for any ζ > 0, there exists h(ζ ) > 0, such that |φ(s)| < 1 − h(ζ ), for
all s with |s| > ζ/�. Therefore, the right-hand side of (3.36) does not exceed

Q2−N�Np�/2(1 − h(ζ ))2−(�−1)Np(1+o(1))−2
∫

‖�s‖>η

�∏

m=1

∣∣φ(sm)
∣∣2

dsm, (3.37)

where the integral is finite again due to Assumption B. Therefore, I 4
N(σ 1, . . . , σ �) is

exponentially smaller than 2−N�. This proves (2.17) on QN and hence the theorem. ��

3.3. Short range spin glasses. As a final example, we consider short-range spin glass
models. To avoid unnecessary complications, we will look at models on the d-dimen-
sional torus, �N , of length N . We consider Hamiltonians of the form

HN(σ) ≡ −N−d/2
∑

A⊂�N

rAJAσA, (3.38)

where e σA ≡ ∏
x∈A σx , rA are given constants, and JA are random variables. We will

introduce some notation:

(a) Let AN denote the set of all A ⊂ �N , such that rA 
= 0.
(b) For any two subsets, A, B ⊂ �N , we say that A ∼ B, iff there exists x ∈ �N such

that B = A + x. We denote by A the set of equivalence classes of AN under this
relation.

We will assume that the constants, rA, and the random variables, JA, satisfy the
following conditions:

(i) rA = rA+x , for any x ∈ �N ;
(ii) there exists k ∈ N, such that any equivalence class in A has a representative

A ⊂ �k; we will identify the set A with a uniquely chosen set of representatives
contained in �k .

(iii)
∑

A⊂�N : r
2
A = Nd .

(iv) JA, A ∈ Z
d , are a family of independent random variables, such that

(v) JA and JA+x are identically distributed for any x ∈ Z
d ;

(vi) EJA = 0 and EJ 2
A = 1, and EJ 3

A < ∞;
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(vii) For any A ∈ A, the Fourier transform φA(s) ≡ E exp (isJA), of JA satisfies
|φA(s)| = O(|s|−1) as |s| → ∞.

Observe that EHN(σ) = 0,

b(σ, σ ′) ≡ N−d
EHN(σ)HN(σ ′) = N−d

∑

A⊂�N

r2
AσAσ ′

A ≤ 1, (3.39)

where equality holds, if σ = σ ′.
Note that YN(σ) = YN(σ ′) (resp. YN(σ) = −YN(σ ′) ), if and only if, for all A ∈ AN ,

σA = σ ′
A (resp. σA = −σ ′

A). E.g., in the standard Edwards-Anderson model, with
nearest neighbor pair interaction, if σx differs from σ ′

x on every second site, x, then
YN(σ) = −YN(σ ′), and if σ ′ = −σ , YN(σ) = YN(σ ′). In general, we will consider
two configurations, σ, σ ′ ∈ S�N , as equivalent, iff for all A ∈ AN , σA = σ ′

A. We denote
the set of these equivalence classes by 	N . We will assume in the sequel that there is
a finite constant, � ≥ 1, such that |	N | ≥ 2Nd

�−1. In the special case of c = 0, the
equivalence relation will be extended to include the case σA = −σ ′

A, for all A ∈ AN . In
most reasonable examples (e.g. whenever nearest neighbor pair interactions are included
in the set A), the constant � ≤ 2 (resp. � ≤ 4, if c = 0)).

Theorem 3.7. Let c ∈ R, and 	N be the space of equivalence classes defined before.

Let δN ≡ |	N |−1ec2/2
√

π
2 . Then the point process

PN ≡
∑

σ∈	N

δ{δ−1
N |HN(σ)−c|}, (3.40)

converges weakly to the standard Poisson point process on R+.
If, moreover, the random variables JA are Gaussian, then, for any c ∈ R, and

0 ≤ α < 1/4, with δN ≡ |	N |−1eN2αc2/2
√

π
2 , the point process

PN ≡
∑

σ∈	N

δ{δ−1
N |HN(σ)−cNα |}, (3.41)

converges weakly to the standard Poisson point process on R+.

Proof. We will now show that Assumptions A of Theorem 2.3 hold. First, the point (i)
of Assumption A is verified due to the following proposition. ��
Proposition 3.8. Let Rη

N,� be defined as in (2.9). Then, in the setting above, for all

0 ≤ η < 1
2 ,

|Rη
N,�| ≥ |	N |�

(
1 − e−hNd(1−2η)

)
, (3.42)

with some constant h > 0.

Proof. Let Eσ denote the expectation under the uniform probability measure on
{−1, 1}�N . We will show that there exists a constant, K > 0, such that, for any σ ′,
and any 0 ≤ δN ≤ 1,

Pσ (σ : b(σ, σ ′) > δN) ≤ exp(−Kδ2
NNd). (3.43)
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Note that without loss, we can take σ ′ ≡ 1. We want to use the exponential Chebyshev
inequality and thus need to estimate the Laplace transform

Eσ exp



tN−d
∑

A∈�N

r2
AσA



 . (3.44)

Let us assume for simplicity that N = nk is a multiple of k, and introduce the sub-lattice,
�N,k ≡ {0, k, . . . , (n − 1)k, nk}d . Write

∑

A∈�N

r2
AσA =

∑

A∈A

∑

y∈�N,k

∑

x∈�k

r2
A+y+xσA+y+x ≡

∑

x∈�k

Zx(σ ), (3.45)

where

Zx(σ) =
∑

y∈�N,k

Yy,x(σ ) (3.46)

has the nice feature that, for fixed x, the summands

Yx,y(σ ) ≡
∑

A∈A
r2
A+y+xσA+y+x

are independent for different y, y′ ∈ �n,k (since the sets A + y + x and A′ + y′ + x are
disjoint for any A, A′ ∈ �k). Using the Hölder inequality repeatedly,

Eσ exp



t
∑

x∈�k

Zx(σ )



 ≤
∏

x∈�k

[
Eσ etkdZx(σ )

]k−d

=
∏

x∈�k

∏

y∈�N,k

[
Eσ etkdYx,y (σ )

]k−d

=
[
Eσ etkdY0,0(σ )

]Ndk−d

. (3.47)

It remains to estimate the Laplace transform of Y0,0(σ ),

Eσ exp
(
tkdY0,0(σ )

)
= Eσ



tkd
∑

A∈�k

r2
AσA



 , (3.48)

and, since Eσ σA = 0, using that ex ≤ 1 + x + x2

2 e|x|,

Eσ exp



tkd
∑

A∈�k

r2
AσA



 ≤ Eσ exp



 t2

2
k2d




∑

A∈�k

r2
A



 e
tkd

∑
A∈�k

r2
A





≡ Eσ exp

(
t2

2
CetD

)
, (3.49)
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so that

Eσ exp



tN−d
∑

x∈�k

Zx(σ )



 ≤ exp

(
N−d t2

2
C′eN−d tD

)
, (3.50)

with constants, C, C′, D, that do not depend on N . To conclude the proof of the lemma,
the exponential Chebyshev inequality gives,

Pσ

[
b(σ, σ ′) > δN

] ≤ exp

(
−δN t + N−d t2

2
C′etN−dD

)
. (3.51)

Choosing t = εNdδN , this gives

Pσ

[
b(σ, σ ′) > δN

] ≤ exp
(
−εδ2

NNd
(

1 − εC′eεδND/2
))

. (3.52)

Choosing ε small enough, but independent of N , we obtain the assertion of the lemma.
��

To verifyAssumptionsA (ii) and (iii), we need to introduce the matrixC = C(σ 1, . . . ,

σ �) with � columns and |AN | rows, indexed by the subsets A ∈ AN : the elements of
each of its column are rAσ 1

A, rAσ 2
A, . . . , rAσ �

A, so that CT C is the covariance matrix,
BN(σ 1, . . . , σ �), up to a multiplicative factor Nd .

Assumption (ii) is verified due to Proposition 3.3. In fact, let us reduce C to the matrix
C̃ = C̃(σ 1, . . . , σ �) with columns σ 1

A, σ 2
A, . . . , σ �

A, without the constants rA. Then,
exactly as in the case of p-spin SK models, by Proposition (3.3), for any (σ 1, . . . , σ �) ∈
L�

Nd ,r
the matrix C̃(σ 1, . . . , σ �) can contain at most 2r − 1 different columns. Hence,

|L�
Nd ,r

| = O((2r − 1)N
d
) while |	N |r ≥ (2Nd

/�)r .
Assumption (iii) is verified as well, and its proof is completely analogous to that of

Proposition 3.5. The key observation is that, again, the number of possible non-degener-
ate matrices C̄r×r that can be obtained from Cp(σ 1, . . . , σ �) is independent of N . But
this is true since, by assumption, the number of different constants rA is N -independent.

Finally, we define QN as follows. For any A ∈ A, let

Qη,A
N,� =

{
(σ 1, . . . , σ �) : ∀1≤i<j≤� r2

A

∑

x∈Zd :x+A⊂�N

σ i
Aσ

j
A < |A|−1N−η

}
. (3.53)

Let us define QN = ⋂
A∈A Qη,A

N,� ⊂ Rη
N,�. By Proposition (3.8), applied to a model

where |A| = 1, for any A ∈ A, we have |S⊗�
N \ Qη,A

N,�| ≤ 2Nd
exp(−hANd(1−2η)), with

some hA > 0. Hence, |Rη
N,�\QN | has cardinality smaller than |	N |� exp(−hNd(1−2η)),

with some h > 0. The verification of (2.17) on QN is analogous to the one in Theo-
rem 3.4, using the analogue of Proposition 3.6. We only note a small difference in the
analysis of the term I 4

N , where we use the explicit construction of QN . We represent the
corresponding generating function as the product of |A| terms over different equivalence
classes of A, with representatives A ⊂ �k , each term being

∏
x∈Zd :x+A∈�N

φ(N−d/2rA

× (t1σ
1
x+A +· · ·+ t�σ

�
x+A)). Next, we use the fact that for any (σ 1, . . . , σ �) ∈ QN each

of these |A| terms is a product of at least 2� − 1 (and of course at most 2�) different
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terms, each is taken to the power |A|−1Nd2−�(1 + o(1)). This proves the first assertion
of the theorem.

The proof of the second assertion, i.e., the case α > 0 with Gaussian variables JA is
immediate from the estimates above and the abstract Theorem 2.2, in view of the fact
that the condition (2.17) is trivially verified. ��
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