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Abstract

This is the second of a series of three papers in which we present a rigorous analysis of Derrida’s Generalized Rando
Models (GREM). Here we study the general case of models with a “continuum of hierarchies”. We prove the converg
the free energy and give explicit formulas for the free energy and the two-replica distribution function in thermodyn
limit. Then we introduce the empirical distance distribution to describe effectively the Gibbs measures. We show that
is uniquely determined via the Ghirlanda–Guerra identities up to the mean of the replica distribution function. Fina
show that suitable discretizations of the limiting random measure can be described by the same objects in suitably construct
GREMs.
 2004 Elsevier SAS. All rights reserved.

Résumé

Cet article est le deuxième d’une série de trois articles où nous présentons l’analyse de Generalized Random Ener
(GREM) de Derrida. Nous étudions ici le cas général des modèles ayant un “continuum de hierarchies”. Nous pro
convergence de l’énergie libre et nous obtenons des formules explicites pour l’énergie libre et la distribution de la dista
deux répliques dans la limite thermodynamique. Puis, nous introduisons la distribution des distances empiriques po
une descrpition complète de la mesure de Gibbs. Nous montrons que sa limite est entièrement déterminée par les i
Ghirlanda–Guerra sachant l’espérance de la distance entre deux répliques. Finalement, nous montrons que les discré
la mesure aléatoire limite sont définies par les mêmes objets dans les GREMs appropriés.
 2004 Elsevier SAS. All rights reserved.
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1. Introduction

In a companion paper [7] we have given a rather complete analysis of thermodynamic limit of De
Generalized Random Energy models [12–15]. We have seen that these are naturally considered as a spec
Gaussian models defined in terms of Gaussian processesXσ on the hypercubeΣSN ≡ {−1,1}N whose covariance
depends only on the ultra-metric valuationdN(σ,σ ′) defined by

dN(σ,σ ′) ≡ 1

N

(
min(i: σi �= σ ′

i ) − 1
)
, (1.1)

i.e.

EXσ Xσ ′ = A
(
dN(σ,σ ′)

)
, (1.2)

whereA is a probability distribution function on the interval[0,1]. In [7] this function was assumed to be a st
function with finitely many steps. We refer to this situation as the standard GREM. In this paper we re
the general class of models where the covariance functionA(x) is no longer considered to be discrete. To av
complications that are not of interest here, we will assume thatA is a piecewise smooth function throughout t
paper. For some of our results we will moreover have to assume thatA is “non-critical”, in the sense that it i
equal to its convex hullonly on the set of extremal points of the convex hull. We will of course draw advan
from the fact that any such function can be approximated arbitrarily well by discrete distributions, for wh
have computed everything quite explicitly. The task is then to show that these approximants can be used t
precisely the asymptotic properties of the processes of interest. Such an approach is of course classical in extr
value theory where it is based on comparison lemmata of Slepian.

We will see that this program can be carried out to a surprising extent and that it allows to compute ess
all the physical objects that are commonly studied in the theory of mean field spin glasses. Let us note that
are doing here goes considerably beyond the earlier investigations by Ruelle [25] and Derrida and Gard
14], who considered limits of GREMs when the number of hierarchies tends to infinity. Here, in contrast w
in finite volume with models with arbitrary covariances andprovethat the thermodynamic limit can be describ
using certain sequences of GREMs. Moreover, the construction of Ruelle using inductive limits does not
in our view, the physics of these models in an appropriate way.

The class of models we introduce here is in principle as rich as the more commonly considered mode
the covariance is a function of the overlapRN(σ,σ ′) ≡ N−1 ∑N

i=1 σiσj . We call this latter class the SK-mode
since it comprises in particular the standard SK-model [26] and thep-spin SK models (for recent progress on the
models, see [27,28,30,17,18,3]). Interestingly, we will see that in our class of models, upon suitable choic
covariance functionA anystructure that emerges as the solution of amean field spin glass in Parisi’s theory c
be obtained. In particular, for some choice ofA the ensuing limiting object will have the same properties as
standard SK model (for fixed temperature). Moreover, as had been pointed out already by Derrida and Gar
[13], one may argue that the particular choice of the distance concept used may not have dramatic cons
on the properties of the system, and that the real key parameter of the model might just be the entro
function of the covariance. With such a universality hypothesis, our results suggest that indeed the Parisi solu
is very natural and that indeed the structures we exhibit here ought to be canonical for any (Gaussian) m
spin glass. The natural relation between models of the SK class and the Derrida class would be that if
in the SK class has a covariance functionB, then the analogue model in the Derrida class must have covar
functionA(x) = B(I−1(ln2x)), whereI is Cramér’s entropy function. In particular, the classicalp-spin SK models
correspond to Derrida models withA(x) = (I−1(ln2x))p. Note for instance that this function is convex ifp = 2,
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while for p � 3, it is concave in a neighborhood of the origin. At least on a qualitative level, the properties of th
models are indeed those that are expected in the corresponding SK-models. However, as was noted b
and Gardner [13,14], on closer inspection one finds numerical agreement with the replica solutions of the
models unsatisfactory, and in particular the temperaturedependence of the free energy does not have the pred
qualitative behaviour. In the SK model, in particular, the replica theory appears to predict “massive” pure
at the edge of the overlap distribution, a fact that does not hold in the corresponding approximation.
fundamental difference between the two model classes remains.

2. Limiting formula and heuristic considerations

As had already been noted by Derrida and Gardner [13,14], thermodynamicquantities in the GREMs posse
limits as the number of levels tends to infinity. In fact, the formulae for the free energy and the overlap distr
can be written in a closed form in terms of the functionA that makes this fact manifest.

Let us denote the convex hull of the functionA(x) by Ā(x). We will also need the right-derivative of th
function,ā(x) ≡ limε↓0 ε−1(Ā(x + ε) − Ā(x)) which exists for all values ofx ∈ (0,1].

It is a very simple matter to realize that the formula of Capocaccia et al. [11] (see Theorem 1.6 in [7]) can
written as

Fβ = √
2 ln2β

xβ∫
0

√
ā(x)dx + β2

2

(
1− Ā(xβ)

)
, (2.1)

where

xβ ≡ sup
(
x | ā(x) > 2 ln2/β2). (2.2)

The mean distance distribution function

fβ(x) ≡ lim
N↑∞ µ⊗2

β,N

(
dN(σ,σ ′) � x

)
(2.3)

as given in Derrida and Gardner [14] or Proposition 1.11 of [7] can be re-written as

Efβ(x) =
{

β−1
√

2 ln2/
√

ā(x), if x < xβ,

1, if x � xβ.
(2.4)

These appealing formulas of course suggest that they might be true also whenA is not a step function with finitely
many steps. We will show that this is indeed the case.

Note that one cannot write such closed expressions for the sub-leadingcorrections to the free energy. In fact,
is to be expected that these will in general not only depend onĀ (see e.g. the analysis of the maximum of branch
Brownian motion by Bramson [10,5]). In particular, we cannot construct immediately sensible limits of the P
cascadesP (k) (see [7]). This might discourage us from inquiring into the finer properties of the Gibbs mea
that were analysed in [7]. However, the situation is actually better than might be feared.

Let us look at the interpretation of the processesW(m)
β that we considered in [7]. We have thought of them

point processes on(0,1]m. However, the vectors(µβ,N(B1(σ )), . . . ,µβ,N(Bm(σ))) are in fact more reasonab
thought of as the values of the mass distribution

mσ (x) ≡ µβ,N

(
dN(σ,σ ′) > x

)
(2.5)

at the valuesqi for which the limiting distribution will have jumps. Seen in this light, it would be most approp
to introduce the following objects, that we may callempirical distance distribution function

Kβ,N ≡
∑

µβ,N(σ )δmσ (·) (2.6)

σ∈SN
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as a random measure on the set of probability measures on[0,1]. This object is an element of thecompactspace
M1(M1(M1([0,1]))) where all sets of measures are endowed with the topology of weak convergence. No
the first moment ofKβ,N is related to the distance distribution functionfβ,N via∫

Kβ,N(dm) = 1− fβ,N . (2.7)

In the case of the GREM with finitely many levels, the results in [7] imply readily the convergence ofKβ,N to
a measure that is concentrated on atomic distributions with jumps at the valuesqi those values are controlled b
the point processW(m)

β , and whence given finally in terms of the processesP (m). This approach clearly fails in
the continuous case. However, we have already seen in the standard GREM, that theGhirlanda–Guerraidentities
[15,1] provide an alternative approach to the construction of the infinite volume limit. Note that this importa
is due to Talagrand, who exploited it in the REM and in thep-spin SK models [T2,T3,T4,T5]. In the CREM th
idea is a crucial tool. Let us briefly outline the strategy that we will follow in the remainder of the paper.

(i) First we will prove that the free energy and the mean distance distribution function will converge to the
given by (2.1) and (2.2). This will rely on the computations in the model with finitely many hierarchies
standard comparison theorems that allow to control convergence of the free energy of a general model thro
those of standard GREMs with finitely many hierarchies.

(ii) Next we observe that the random measuresKβ,N are completely determined by the so-called ‘multi-over
distribution functions’. We will then show that the latter satisfy the Ghirlanda–Guerra indentities, and tha
allow to characterize the possible limit points up to functionEfβ . By compactness, this implies convergen
of Kβ,N to aKβ that is completely determined byEfβ .

(iii) Finally, we will introduce certain marginals of the measuresKβ and show that, again due to the Ghirland
Guerra identities, these are identical to the corresponding objects in certain GREMs with finitely many
hierarchies, and are thus explicitly constructable in terms of Poisson cascades.

As a result, we obtain a complete and quite explicit description of the asymptotics of the Gibbs measure
class of models.

In the last paper [8] of this series we give a description of the geometry of the Gibbs measure for the CR
terms of genealogies of Neveu’s continuous state branching process.

3. Ground state energy and free energy

The basis of all our results is control of the convergence of the free energy. As a warm-up let us first c
the ground state energy density. Recall that the leading term in the functionUJ,N(x) takes the form

√
2N ln2

1∫
0

√
ā(x)dx (3.1)

which provides a closed form for the ground state energy for our models.
In fact, this formula holds in the general case.

Theorem 3.1. LetXσ be a centered Gaussian process onSN with covariance given by(1.2). Then

lim
N↑∞N−1/2E max

σ∈SN

Xσ = √
2 ln2

1∫
0

√
ā(x)dx. (3.2)
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Proof. Let An denote a sequence of piecewise constant distributions functions such thatAn(x) � A(x) for all
x ∈ [0,1] that converge toA in the sup-norm. Denote the corresponding processes byX

(n)
σ . Then, by Slepian’s

lemma [19],

E max
σ∈SN

X(n)
σ � E max

σ∈SN

Xσ . (3.3)

On the other hand, for alln,

lim
N↑∞N−1/2E max

σ∈SN

Xσ = √
2 ln2

1∫
0

√
ā(x)dx. (3.4)

Moreover, ifAn converges toA, thenān(x) converges tōa(x). Thus

lim sup
N↑∞

N−1/2E max
σ∈SN

Xσ �
√

2 ln2

1∫
0

√
ā(x)dx. (3.5)

It remains to prove a corresponding lower bound. To do so, we need to construct a sequence of piecewise con
distribution functionsBn such thatBn(x) � A(x) for all x ∈ [0,1]. This introduces only one small problem, nam
that in general such an upper approximation will have to have a positive atom at zero, and the last “atobn,
may have to be zero. The latter fact has no consequence, while the former requires us to slightly mo
representation formula (1.4) in [7] into

X̃σ = √
b0X0 +

√
b1Xσ1 + · · · + √

bn−1Xσ1...σn, (3.6)

where now
∑n−1

k=1 bk = 1− b0, andX0 is a new standard Gaussian, independent of all others. Thus the mean
maximum ofX̃σ is equal to the mean of the maximum ofX̃σ −√

b0X0. This variable has the same form as befo
except that the total variance is diminished byb0. Then the formula for its mean takes the same form as be
Thus

lim
N↑∞N−1/2E max

σ∈SN

X̃σ = √
2 ln2

1∫
0

√
b̄n(x)dx (3.7)

and Slepian’s lemma now shows that

lim inf
N↑∞ N−1/2E max

σ∈SN

Xσ �
√

2 ln2

1∫
0

√
ā(x)dx. (3.8)

This proves the theorem.�
In the same way, we get a corresponding result for the free energy in the general case. Essentially all w

to replace Slepian’s lemma by the more general result given as Theorem 3.11 in [20], Chapter 3, p. 74.

Lemma 3.2. LetX andY ben-dimensional Gaussian vectors. LetD1 andD2 be subsets of{1, . . . , n}×{1, . . . , n}.
Assume that

EXiXj � EYiYj , if (i, j) ∈ D1,

EXiXj � EYiYj , if (i, j) ∈ D2,

EX X = EY Y , if (i, j) /∈ D ∪ D .

(3.9)
i j i j 1 2
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Letf be a function onRn such that its second derivatives satisfy

∂2

∂xi∂xj

f (x) � 0, if (i, j) ∈ D1,

∂2

∂xi∂xj

f (x) � 0, if (i, j) ∈ D2.

(3.10)

Then

EF(X) � EF(Y ). (3.11)

Theorem 3.3. Under the assumptions of Theorem3.1, let

xβ ≡ sup
(
x | ā(x) > 2 ln2/β2).

Then

lim
N↑∞N−1E lnZβ,N = √

2 ln2β

xβ∫
0

√
ā(x)dx + β2

2

(
1− Ā(xβ)

)
. (3.12)

Note that this formula implies that the critical temperatureβc is given by

βc =
√

2 ln2

limx↓0 ā(x)
.

Proof. We may easily check that the function ln
∑

σ eβ
√

NXσ satisfies the hypothesis of Lemma 3.2 withD1 =
{σ,σ ′ ∈ S2

N : σ �= σ ′} and D2 = ∅. Thus takingA±
n (1) = A(1) and A±

n (x) smaller respectively larger thanA
elsewhere, we can indeed construct upper and lower bounds forFβ that converge to the same limit whenn ↑ ∞. �

As we have seen in the discrete case, a crucial observation is that the distance distribution function can
expressed as a derivative of the free energy as a function of the covariance. In the continuous case, this
little more subtle and will require tointroduce some more structure.

In the discrete case we needed to be able to differentiate with respect to the value of one atom, and then to
an integration by parts formula. Both is not immediately obvious in the general case. In fact, to do so it will
necessary to add some temporal structure to our Gaussian processXσ and to define the Gaussian processXσ (t),
σ ∈ SN , t ∈ [0,1] with covariance

cov
(
Xσ (t),Xσ ′(s)

) = A
(
t ∧ s ∧ [

dN(σ,σ ′)
])

. (3.13)

Note thatXσ (t) is a martingale in the variablet and that its increments with respect tot are independent. It is als
useful to realize that we may representXσ (t) as

Xσ (t) = Yσ

(
A(t)

)
, (3.14)

whereYσ (t) is a continuous Gaussian martingale with covariance

cov
(
Yσ (t), Yσ ′(s)

) = t ∧ s ∧ A
(
dN(σ,σ ′)

)
. (3.15)

Observe that there is the following integration by parts formula:

Lemma 3.4. For any t ∈ (0,1] andε > 0,

EEσ
(Xσ (t + ε) − Xσ (t))eβ

√
NXσ

Eσ ′eβ
√

NXσ ′
= β

√
N

t+ε∫
t

dA(s)Eµ⊗2
β,N

[
dN(σ,σ ′) � s

]
. (3.16)
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Proof. Let us introduce the infinitesimal increments of the processYσ (t). Clearly

EdYσ (t) dYσ ′(s) = dt ds δ(s − t)1A(dN(σ,σ ′))>t . (3.17)

The proof makes use of the Gaussian integration by parts formula

EdYσ (t)f

(∫
dYσ ′(s)

)
= Ef ′

(∫
dYσ ′(s)

)∫
EdYσ (t) dYσ ′(s) = Ef ′(Yσ ′)1A(dN(σ,σ ′))>t dt, (3.18)

wheref is any differentiable function. Using (3.18) in (3.17), we get

EEσ

dYσ (t) eβ
√

NYσ

Eσ ′eβ
√

NYσ ′
= dt EEσ Eσ ′

(1− 1A(dN(σ,σ ′))>t)e
β
√

N(Xσ +Xσ ′ )

(Eσ ′eβ
√

NXσ ′ )2
β
√

N. (3.19)

Thus

EEσ
dXσ (t) eβ

√
NXσ

Eσ ′eβ
√

NXσ ′
= dA(t)Eµ⊗2

β,N(1A(dN(σ,σ ′))�A(t))β
√

N (3.20)

which yields the result upon integration and realizing thatA(dN(σ,σ ′)) � A(t) is equivalent todN(σ,σ ′) � t

wheneverA(t) is not constant. �
Next we want to express the right-hand side of (3.16) as a derivative of the free energy. To that end con

t ∈ [0,1] andε > 0 fixed the random process

Xu
σ ≡ Xσ + u

[
Xσ (t + ε) − Xσ (t)

]
. (3.21)

Clearly

cov(Xu
σ ,Xu

σ ′) = Au
(
dN(σ,σ ′)

)
, (3.22)

where

Au(x) =


A(x), if x � t,

A(x) + (2u + u2)(A(x) − A(t)), if t < x � t + ε,

A(x) + (2u + u2)(A(t + ε) − A(t)), if x > t + ε.

(3.23)

Let us denote the partition function corresponding to the process with covarianceAu by Zu
β,N , etc. Clearly we have

that

β
√

NEEσ

(Xσ (t + ε) − Xσ (t))eβ
√

NXσ

Eσ ′eβ
√

NXσ ′
= d

du
(E lnZu

β,N)u=0. (3.24)

This yields the generalization of Proposition 5.1 of [7] in the discrete case:

Lemma 3.5. With the notation introduced above we have for anyt ∈ (0,1] and anyε > 0 that

β−2N−1 d

du
(E lnZu

β,N)u=0 =
t+ε∫
t

dA(s)Eµ⊗2
β,N

[
dN(σ,σ ′) � s

]
. (3.25)

This allows us to obtain an explicit formula for the distance distribution function.

Theorem 3.6. Under the assumptions of Theorem3.1,

lim
N↑∞ Eµ⊗2

β,N

(
dN(σ,σ ′) � x

) =
{

β−1
√

2 ln2/
√

ā(x), if x < xβ,

1, if x � xβ.
(3.26)
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Proof. Observe thatFu
β,N ≡ N−1E lnZu

β,N is a convex function ofu. A trivial extension of Theorem 3.1 show
thatFu

β,N converges to the functionFu
β given by the expression (3.12) whenA is replaced byAu. By convexity,

this implies that limN↑∞ d
du

Fβ,N = d
du

Fβ at all pointsu whereFu
β is differentiable. Thus we only have to compu

this derivative. We can write

Fu
β − Fβ = √

2 ln2β

xβ∫
0

dx
(√

āu(x) − √
ā(x)

) + √
2 ln2β

xu
β∫

xβ

dx
√

āu(x) + β2

2

(
Āu(xβ) − Āu(xu

β)
)

+ β2

2

((
Āu(1) − Āu(xβ)

) − (
Ā(1) − Ā(xβ)

))
. (3.27)

If xβ < t , (3.27) simplifies to

Fu
β − Fβ = β2

2

((
Āu(1) − Āu(xβ)

) − (
Ā(1) − Ā(xβ)

))
= β2

2

(
Āu(1) − Ā(1)

) = (2u + u2)
β2

2

[
A(t + ε) − A(t)

]
. (3.28)

This is due to the fact that̄A cannot be linear in a neighbourhood ofxβ , while on the other hand̄Au(x) = Ā(x)

up to a pointz(u) that is either of ordert − O(u) (if the functionĀ is strictly convex in a left neighbourhood o
t , or equals the lower boundary of the region containingt whereĀ is linear. In both cases,xβ < z(u) if u is small
enough.

Hence in this case

d

du
(Fu

β )u=0 = β2[A(t + ε) − A(t)
]
. (3.29)

Inserting this into (3.25) and lettingε tend to zero, we obtain that fort > xβ , limN↑∞ Eµ⊗2
N,β [dN(σ,σ ′) � t] = 1.

If xβ > t (and consequentlyxb > t + ε for ε > 0 small enough), we must distinguish two cases: (a)A is strictly
convex in a left neighbourhood oft + ε, thenĀ(x) = A(x) for x ∈ [t, t + ε]; (b) Ā is linear in a left neighbourhoo
of t + ε.

(a) In this case the functionAu(x) is not convex in a neighbourhood oft , since forx < t its derivative
au(x) = a(x) and forx > t , au(x) = a(x)(1+ 2u + u2). To construct its convex hull̄Au(x), one should find the
pointsz1(u), z2(u), z1(u) < t < z2(u) � t + ε such that the straight line passing throughA(z1(u)) andAu(z2(u))

is tangent toA(x) at x = z1(u) and toAu(x) at x = z2(u). In other wordsa(z1(u)) = a(z2(u))(1+ 2u + u2) and
A(z2(u)) + (2u + u2)(A(z2(u)) − A(t)) = A(z1(u)) + (z2(u) − z1(u))a(z1(u)). ThenĀu(x) coincides with this
straight line forx ∈ [z1(u), z2(u)], while Āu(x) = Ā(x) for x ∈ [0, z1(u)), Āu(x) = Au(x) for x ∈ (z2(u), t + ε],
andĀu(x) = Ā(x) + (2u + u2)(A(t + ε) − A(t)) for x ∈ (t + ε,1]. Then the last terms in (3.27) are zero and

Fu
β − Fβ = √

2 ln2β

xβ∫
0

dx
(√

āu(x) − √
ā(x)

)

= √
2 ln2β

t∫
z1(u)

dx
(√

a(z1(u)) − √
a(x)

)

+ √
2 ln2β

z2(u)∫
dx

(√
a(z2(u))(1+ 2u + u2) −

√
a(x)(1+ 2u + u2)

)

t
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nd
+ √
2 ln2β

t+ε∫
t

dx
(√

a(x)(1+ 2u + u2) − √
a(x)

)
. (3.30)

Note that the straight line tangent toA(x) at the pointx = z(u) < t , such thata(z(u)) = a(t)(1 + 2u + u2) does
not crossAu(x) for x > z(u). Thenz(u) < z1(u) < t . Sincez(u) = t + O(u), thenz1(u) = t + O(u). It follows that
a(z1(u)) = a(t) + O(u), a(z2(u)) = a(t) + O(u) and finallyz2(u) = t + O(u). Then the integrand in the first ter
satisfies

0�
√

a(z1(u)) − √
a(x) �

√
a(z1(u)) − √

a(t) = O(u) (3.31)

and in the second one

0�
√

a(z2(u))(1+ 2u + u2) −
√

a(x)(1+ 2u + u2)

�
√

a(z2(u))(1+ 2u + u2) − √
a(t) = O(u). (3.32)

Sincez2(u) − z1(u) = O(u), the integrals over both of these terms are of order O(u2) and does not contribute t
the derivative ofFu

β . The integral of the first term can be written as

(√
1+ 2u + u2 − 1

) t+ε∫
t

√
a(x)dx = u

(
1+ o(1)

) t+ε∫
t

1√
ā(x)

dA(x). (3.33)

Therefore, by (3.25), we get that

√
2 ln2β−1

t+ε∫
t

dA(x)
1√
ā(x)

=
t+ε∫
t

dA(x) lim
N↑∞Eµ⊗2

N,β

[
dN(σ,σ ′) � x

]
. (3.34)

Since this is true for anyε > 0, (3.26) follows.
(b) We now consider the case whenĀ is linear to the left oft + ε. The deformation ofĀ now extends furthe

down to the beginning of the linear piece ofĀ. Assume thatĀ is linear on the interval(y, z] ⊃ (t, t + ε]. Then,
for small enoughu, the slope ofĀu will differ from that of Ā only in (y, z]. Moreover,Āu(y) = Ā(y) and
Āu(z) = Ā(z) + (2u + u2)(A(t + ε) − A(t)). Let

z∗ ≡ sup
x∈(y,z]

{
Āu(x) − Ā(x) < (2u + u2)

(
A(t + ε) − A(t)

)}
. (3.35)

Obviously,xβ /∈ (y, z). If t � xβ , we get that

Fu
β − Fβ = √

2 ln2β

z∗∫
y

dx
(√

ā(y) + (2u + u2)(A(t + ε) − A(t))/(z∗ − y) − √
ā(y)

)

= √
2 ln2β

√
ā(y)

z∗∫
y

dx
(√

1+ (2u + u2)(A(t + ε) − A(t))/(ā(y)(z∗ − y)) − 1
)

= √
2 ln2β

(
ā(y)

)−1/2
u
(
A(t + ε) − A(t)

) + O(u2). (3.36)

Again (3.26) follows now from (3.25). �
Remark. It is clear from the above consideration that we may repeat the same computation withu < 0 to compute
the left-derivative ofFu

β at zero. The results coincide, except whent = xβ . Similarly, one shows that the seco
derivative ofFu

β is finite in a neighbourhood of zero whenevert �= xβ .
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4. Ruelle’s processes and Ghirlanda–Guerra identities

We need to begin with some more notation. Let us denote byΣσ (t) the sets

Σσ (t) ≡ {
σ ′ ∈ SN | dN(σ,σ ′) > t

}
. (4.1)

Note that by ultrametricity, we have that for allσ ′ ∈ Σσ (t), Σσ ′(t) = Σσ (t). The set of all distinct setsΣσ (t),
σ ∈ SN is isomorphic to{−1,1}[tN] ≡ S t

N .
We will now reconsider the point procesŝWβ,N introduced in [7] in a somewhat different way. Note that

atoms of the procesŝWβ,N , (µβ,N(Σσ (q1)), . . . ,µβ,N(Σσ (ql(β)))) can be seen as the increments of the m
distribution aroundσ measured in the hierarchical distance, i.e. we can think of the process aŝWβ,N as a point
process on the space of probability distributions on[0,1],

Ŵβ,N =
∑

σ∈SN

δmσ (·). (4.2)

Of course, in the case of finitely many hierarchies, all measures are supported on the set of atomic dist
with atoms at fixed points. As a matter of fact, this definition turns out not to be too convenient. Already in th
of the discrete GREM, we have followed Ruelle’s prescription only by convention. In the continuous case
become essentially imperative to replacêWβ,N by the process

Kβ,N ≡
∑

σ∈SN

µβ,N(σ )δmσ (·). (4.3)

The advantage is that this object is a randomprobabilitymeasure on the space of mass distributions. Let us me
that in spirit this measure is rather close to the “metastates” introduced by Aizenman and Wehr [2] and pr
in the context of spin glasses by Newman and Stein [21–23]. It has a very appealing physical interpretation
for a fixed realization of the disorder, with which probability an observer that is itself distributed with the
distribution, will see a given distribution of mass around himself.

Let us say a word more on the interpretation of these processes. Recall that∫
Kβ,N(dm)m(q) = µ⊗2

β,N

(
dN(σ,σ ′) > q

) = 1− fβ,N (q). (4.4)

ThusKβ,N will be asymptotically concentrated on distributions for whichm(q) = 0 if q � xβ . In other words, the
smallest blocksΣσ around any pointσ that have positive mass are of size 2(1−xβ)N . Since the mass distributio
around any point within such a “massive” block is identical, such a block contributes with massµβ,N(σ ) with a
Dirac measure on the empirical mass distribution around itself.

While in the discrete case, the convergence of these processes could be proven directly, it is a priori not cl
how this could be achieved in the general case. But recall that in the discrete case, instead of constructing
limiting processes directly, the Ghirlanda–Guerra identities provide an alternative way. We will see that th
is still open in the general case.

4.1. Point processes on the space of probability distributions

We will think of the quantitiesKβ,N as probability distributions on the space of probability distributi
on [0,1], that is to say as elements of the spaceM1(M1(M1([0,1]))). Equipping the spacesM1([0,1]) and
M1(M1([0,1])) with the topologies of weak convergence, there is no obstacle to define weak convergenc
objects in much the same way as in the discrete case (whenM1([0,1]) was replaced by a finite dimensional simpl
in Rn). Just note that the continuous functions of a measurem ∈ M1([0,1]) can be approximated arbitrari
well by monomials in finite collections of integrals with respect tom of indicator functions of (disjoint) interval
∆1, . . . ,∆l ⊂ [0,1], and that in turn continuous functions of a measureW ∈M1(M1([0,1])) can be approximate
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by polynomials in a collection of integrals of such functions. Thus, if we show that for any collection∆ij ⊂ [0,1]
and integersqi , rij , i = 1, . . . , l, j = 1, . . . , ki ,

E

((∫
Kβ,N (dm)m(∆11)

r11 . . .m(∆1j1)
r1j1

)q1

· · ·
(∫

Kβ,N(dm)m(∆l1)
rl1 · · ·m(∆ljl )

rljl

)ql
)

(4.5)

converges, then the point processKN,β converges weakly to a limitKβ .
A somewhat simpler way of looking at this process is to simply consider

Kβ,N(t) ≡
∑
σ

µβ,N(σ )δmσ (t) (4.6)

and to think of it as a measure valued process on[0,1]. This process is usually called the coalescent and
been studied in the spin glass context by Bolthausen and Sznitman [6]. An alternative construction b
subordinators was later given by Bertoin and Le Gall [4]. It clearly contains somewhat less information thKβ

itself.

4.2. Multi-overlap distributions

Our task is now to prove the Ghirlanda–Guerra identities in the general case.

Theorem 4.1. For anyn ∈ N and anyx ∈ [0,1]\xβ for which the derivative ofA(x) does not vanish

lim
N↑∞

∣∣∣∣∣Eµ⊗n+1
β,N

(
h(σ 1, . . . , σ n)1dN(σ k,σn+1)>x

)
− 1

n
Eµ⊗n+1

β,N

(
h(σ 1, . . . , σ n)

(
n∑

l �=k

1dN(σ k,σ l)>x + Eµ⊗2
β,N (1dN(σ1,σ2)>x)

))∣∣∣∣∣ = 0. (4.7)

Proof. One of the pillars of the Ghirlanda–Guerra identities is concentration of measure for the free ener
holds also here:

Lemma 4.2. For anyβ and for anyε � 0

P
[| lnZβ,N − E lnZβ,N | > ε

]
� 2 exp

(
− ε2

2β2N

)
. (4.8)

Proof. This follows, e.g., from the standard Gaussian concentration of measure theorem (see [20])
representation of lnZβ,N as a Lipshitz function of 2N+1 − 2 independent standard Gaussian random varia
with Lipshitz constantβ

√
N . �

As a first step we need the generalization of Lemma 3.4 as in Lemma 5.2 of [7].

Lemma 4.3. Ror anyt ∈ (0,1] andε > 0, andh :Sn
N → R any bounded function ofn spin-configurations:

1√
N

Eµ⊗n
β,N

((
Xσk(t + ε) − Xσk(t)

)
h(σ 1, . . . , σ n)

)
= β

t+ε∫
t

dA(s)Eµ⊗n+1
β,N

(
h(σ 1, . . . , σ n)

(
n∑

l=1

1dN(σ k,σ l )>s − n1dN (σ k,σn+1)>s

))
. (4.9)
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Proof. Exactly analogous to the proof of Lemma 3.4.�
The more important step is the proof of the analogue of Lemma 5.3 of [7].

Lemma 4.4. Leth be as in the previous lemma. Except possibly whent = xβ ,

lim
N↑∞

1√
N

∣∣Eµ⊗n
β,N

((
Xσk (t + ε) − Xσk (t)

)
h(σ 1, . . . , σ n)

)
− Eµβ,N

(
Xσk(t + ε) − Xσk(t)

)
Eµ⊗n

β,N

(
h(σ 1, . . . , σ n)

)∣∣ = 0. (4.10)

Proof. Let us write(
Eµ⊗n

β,N

((
Xσk (t + ε) − Xσk (t)

)
h(σ 1, . . . , σ n)

) − Eµβ,N

(
Xσk(t + ε) − Xσk(t)

)
Eµ⊗n

β,N

(
h(σ 1, . . . , σ n)

))2

= (
Eµ⊗n

β,N

(((
Xσk (t + ε) − Xσk (t)

) − Eµ⊗n
β,N

(
Xσk (t + ε) − Xσk (t)

))
h(σ 1, . . . , σ n)

))2

� Eµ⊗n
β,N

((
Xσk (t + ε) − Xσk(t)

) − Eµ⊗n
β,N

(
Xσk (t + ε) − Xσk (t)

))2
Eµ⊗n

β,N

(
h(σ 1, . . . , σ n)

)2
, (4.11)

where the last inequality is the Cauchy–Schwarz inequality applied to the joint expectation with respect to th
Gibbs measure and the disorder. Obviously the first factor in the last line is equal to

Eµβ,N

((
Xσk(t + ε) − Xσk(t)

) − µβ,N

(
Xσk(t + ε) − Xσk(t)

))2

+ E
(
µβ,N

(
Xσk(t + ε) − Xσk(t)

) − Eµβ,N

(
Xσk (t + ε) − Xσk (t)

))2

= −β−2E
d2

du2
Fu=0

β,N + Nβ−2E

(
d

du
Fu=0

β,N − E
d

du
Fu=0

β,N

)2

, (4.12)

where we used the same notation as in the proof of Theorem 3.3. We know thatFu
β,N converges asN ↑ ∞ and that

the limit is infinitely differentiable as a function ofu, except possibly whenxβ = t ; moreover,−Fu
β,N is convex in

the variableu. Then a standard result of convex analysis (see [24], Theorem 25.7) imply that

lim sup
N↑∞

(
−E

d2

du2
Fu

β,N

)
= − d2

du2
lim

N↑∞ EFu
β,N (4.13)

which is finite at zero except possibly ifxβ = t . Thus, the first term in (4.12) will vanish when divided byN . To
see that the coefficient ofN of the second term gives a vanishing contribution, we use the general fact tha
variance of family of a convex (or concave) functions tends to zero, then the same is true for its derivative, p
the second derivative of the expectation is bounded (see e.g. Lemma 8.9 in [9], or Proposition 4.3 in [29]).

But by Lemma 4.2 the variance ofFβ,N tends to zero, and (4.13) implies thatE d2

du2F
u
β,N is bounded for large

enoughN whenever d2

du2 EFu
β is finite. By the remark following the proof of Theorem 3.6 this is true except a

special valuet = xβ and using the fact thatA is non-critical. Hence the result of the lemma is proven.�
The theorem now follows easily by using (4.10) on the left-hand side of (4.9), and expressing the resulti

with the help of (3.16). Noting that the result holds for anyε > 0 then yields (4.7). �
Following [16], we now define the family of measuresQ

(n)
N on the space[0,1]n(n−1)/2:

Q
(n)
β,N(dN ∈A) ≡ Eµ⊗n

N,β [dN ∈A], (4.14)

wheredN denotes the vector of replica distances whose components aredN(σ l, σ k), 1� l < k � n. Denote byBk

the sigma-algebra generated by the firstk(k − 1)/2 coordinates, and letA be a Borel set in[0,1].
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Fig. 1. The distanced(k, k + 1) determines all other distancesd(j, k + 1).

Theorem 4.5. The family of measuresQ(n)
β,N converge to limiting measuresQ(n)

β for all finite n, as N ↑ ∞.
Moreover, these measures are uniquely determined by the distance distribution functionsfβ . They satisfy the
identities

Q
(n+1)
β (dk,n+1 ∈ A | Bn) = 1

n
Q

(2)
β (A) + 1

n

n∑
l �=k

Q
(n)
β (dk,l ∈ A | Bn) (4.15)

for any Borel setA. As a consequence, the random measureKβ,N converges in distribution to the random meas
Kβ whose generalized moments are given byQβ .

Proof. Choosingh as the indicator function of any desired event inBk, one sees that (4.7) implies (4.15
This actually implies that in the limitN ↑ ∞, the family of measuresQ(n)

β,N is entirely determined by
the two-replica distribution function. While this may not appear obvious, it follows when taking into
count the ultra-metric property of the functiondN . This is most easily seen by realising that the p
scription of the mutual distances betweenk spin configurations amounts to prescribing a tree (start
k configurations at the origin and continue on top of each other as long as the coordinates coincid
then branch of). To determine the full tree ofk + 1 configurations, it is sufficient to know the overl
of configurationσ (k+1) with the configuration it has maximal overlap with, since then all overlaps
all other configurations are determined. But the corresponding probabilities can be computed recursive
via (4.14).

Now we have already seen thatQ
(2)
β,N = Efβ,N converges. Therefore the relation (4.14) implies the converg

of all distributionsQ(n)
β,N , and proves the relation (4.15) hold for the limiting measures.

Now it is clear that all expressions of the form (4.5) can be expressed in terms of the measuresQ
(k)
β,N for k

sufficiently large (we leave this as an exercise for the reader to write down). Thus all limit points of seq
of distributions of the measuresKβ,N must coincide. By compactness of the spaceM1(M1(M1([0,1]))), this
implies the convergence of the processKβ,N to a limit Kβ . �

A remarkable feature takes place again if we are only interested in the marginal processKβ(t) for fixed t . This
process is a simple point process on[0,1] and is fully determined in terms of the moments



494 A. Bovier, I. Kurkova / Ann. I. H. Poincaré – PR 40 (2004) 481–495

as in the

e
by

a
s

fact

it
the
the

iversité

3.
9–

eory

nn.
E

(∫
Kβ,N(t)(dx)xr1 · · ·

∫
Kβ,N(t)(dx)xrj

)
= Eµ

⊗r1+···+rj +j

β,N

(
1dN(σ1,σ j+1)>t · · ·1...,dN (σ1,σ j+r1 )>t · · ·

× 1
dN(σ j ,σ

j+r1+···+rj−1+1
)>t

· · ·1
dN(σ j ,σ

j+r1+···+rj )>t

)
. (4.16)

This restricted family of moments satisfies via the Ghirlanda–Guerra identities exactly the same recursion
case of the REM. This implies:

Theorem 4.6. Assume thatt is such thatEµ⊗2
β (dN(σ,σ ′) < t) = 1/α > 0. Then the random measureKβ(t) is a

Dirichlet–Poisson process(see e.g.[25,27])with parameterα.

In fact much more is true. We can consider the processes on arbitrary finite dimensional marginals, i.e.

Kβ,N(t1, . . . , tm) ≡
∑

σ∈SN

µβ,N(σ )δmσ (t1),...,mσ (tm) (4.17)

for 0 < t1 < · · · < tm < 1. The point is that this process is entirely determined by the expressions (4.5) with th∆ij

all of the form(ti,1] for ti in the fixed set of valuest1, . . . , tm. This in turn implies that the process is determined
the multi-replica distribution functionsQ(n)

β,N restricted to the discrete set of events{dN(σ i, σ j ) > tk}. Since these
numbers are totally determined throughthe Ghirlanda–Guerra identities, they are identically to those obtained in
GREM with m levels, i.e. a functionA having steps at the valuesti , those two-replica distribution function take
the same values as that of the model with continuousA at the pointsti and is constant between those values. In

Theorem 4.7. Let 0 < t1 < · · · < tk � qmax(β) be points of increase ofEfβ . Consider a GREM withk levels and
parametersαi, ai and temperaturẽβ that satisfylnαi/ ln2 = ti − ti−1, β̃−1√2 lnαi/ai = Efβ(ti). Then

lim
N↑∞Kβ,N(t1, . . . , tk) =W(k)

β̃
. (4.18)

Thus, if theti are chosen in such a way that for all of themEfβ(ti) > 0, then we can construct an explic
representation of the limiting marginal processKβ(t1, . . . , tm) in terms of a Poisson-cascade process via
corresponding formulae in the associatedm-level GREM. In this sense we obtain an explicit description of
limiting mass distribution functionKβ .
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