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An asymptotic maximum principle
for essentially linear evolution models

Abstract. Recent work on mutation-selection models has revealed that, under specific as-
sumptionson the fitnessfunction and the mutation rates, asymptotic estimatesfor theleading
eigenvalueof the mutation-reproduction matrix may be obtained through alow-dimensional
variational principlein thelimit N — oo (where N isthe number of types). In order to gen-
eralizetheseresults, we consider here alarge family of reversible N x N matricesand iden-
tify conditions under which the high-dimensional Rayleigh-Ritz variational problem may be
reducedto alow-dimensional onethat yieldstheleading eigenvalueup to an error term of or-
der 1/N . For alarge class of mutation-selection models, thisimplies estimatesfor the mean
fitness, as well as a concentration result for the ancestral distribution of types.

1. Introduction

Many systems of population biology, or reaction kinetics, may be cast into aform
where individuals(or particles) of different types reproduce and change typeinde-
pendently of each other in continuoustime. If thetypescome from afiniteset S and
the population is so large that random fluctuations may be neglected, oneisled to
alinear system of differential equations of the form

y=yH 1)

withinitia condition y(0). Here, y = (yi)ies € ]RLSA holds the abundance of the
varioustypes. H = (H;;);,jes iSan |S|x|S| matrix, which represents a linear op-
erator on RIS, Important examples include models of age-structured populations,
which are often referred to as matrix population model's, see Caswell’smonograph
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[10]. The main application we have in mind here isin population genetics, where
types are alleles, so that Equation (1) is a haploid mutation-reproduction model;
but one may also think of acompartment model, wheretypesarelocations of a cer-
tain chemical. In line with large parts of the population genetics, and most of the
stochagtics, literature, we will use the conventionthat y isarow vector towhich H
is applied from theright, so that H;; (¢ # 7) isthe coefficient for the change from
110j.

Wewill assume throughoutthat thelinear operator H generatesapositivesemi-
group, {exp(tH) | ¢t > 0}. Since S isfinite, thisisequivalentto H;; > 0fori # j.
The flow so generated Ieavesﬂ%'fé invariant. We will further assume that H isir-
reducible(i.e, if G(H) is the directed graph with an edge fromi to j if i # j and
H;; > 0, thenthereis adirected path from any vertex to any other vertex).

We will often use the decomposition

H=M+R ©

intoaMarkov generator M and adiagonal matrix R. More precisely, wehave M =
(Mij)i,jes WithMij = Hij ford # j, M;; = — Zjes\{i} Mij (SOthathEs Mij =
0), and R = diag{R; | i € S} with R; := H;; — M;;. Clearly, the decomposition

in (2) isunique, and M isirreducibleiff H is, because G(M) = G(H). M;; isthe
rate at which an i-individua produces j-offspring (;j # ¢), and R; isthe net rate

at which individuals of type ¢ reproduce themselves; this may aso include death
terms and thus be negative.

Solutions of (1) cannot vanish altogether (unless y(0) = 0), since tr(H) is fi-
nite, hence det (exp(tH)) =exp(ttr(H)) > 0 and ker(exp(tH)) = {0}, for dll
t > 0. Therefore, we may also consider the corresponding normalized equation for
the proportionsp; := y; /(3 ;¢ s ¥;), Which is sometimes more relevant. Clearly,

pi=> piMji+ (Ri— > Rjp;)pi. (©)
j€s jES
Inthe popul ation genetics context, thisisthe mutati on-sel ection equation for ahap-
loid population, or a diploid one without dominance; for a comprehensive review
of this class of models, see [8]. It iswell known, and essy to verify, that the way
back from (3) to (1) is achieved through ‘ Thompson'strick’ [36]:

y(t) := p(t) exp (Z R; /Ot pj(T)dT) .

jES
This substitution can thus be viewed as a global linearization transformation and
explainswhy (3) isan ‘essentialy linear’ equation.
Clearly, the solution of (3) is obtained from that of (1) through normalization:
_ (@)
> u(l)
Of course, proportions of typesin a population that grows without restriction
(which is biologically reasonable only over short time scales) is not the only way

y(t) = y(0) exp(tH), p(1)
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inwhich (3) may arise. Actually, the same equation for p resultsif (1) is replaced
by
y=y(H—-~(1)),

wherey(t) issome scalar (possibly nonlinear) function which describes the elimi-
nation of individualsby popul ationregulation. Thisis obviousfrom theinvariance
of (3) under R; — R; + ~(¢) if performed simultaneoudly for al 4. The function
v(t) may, for example, describe the flow out of achemostat, or an additional desth
term caused by crowding, which may depend on ¢ through y, but acts on al types
in the same way.

Eq. (3) may beread in two ways (cf. [23]). If mutation and reproduction go on
independently of each other, the paralléel (or decoupled) version isadequate. Here,
every i-individual giveshbirthto offspring of itsown typeet rate B;, dies at rate D;,
and mutatesto j at rate M;; (j # ¢). R; := B;— D; thenisthenet reproductionrate
or Malthusian fitness[11, Ch. 5.3], and Eq. (3) isimmediate. If, however, mutation
isaside effect of reproduction (through copying errors of the replication process,
for example), the coupled version[1,20] ismorerelevant. When an i-individual re-
produces (which it does, asbefore, at rate B;, whileit diesat rate D;), the offspring
is of type j with probability V;; (Zj Vi; = 1). Thisleadsto

P = (ijBjVji) — (Di + Zijj)pi, (4)
JES JES

where, again, R; = B; — D;. Butif weset M;; := B;(V;; — d;;), wearriveagain
at Eq. (3). Inbothcases, ) . R;p; isthemean fitness of the population. Obviously,
amixture of boththe parallel and the coupled mutation mechanisms can be tackled
in the same way, but we omit further details.

The mode (4) also arises in the infinite population limit of the well-known
Moran model with selection and mutation, see[15, Ch. 3] or [12, p. 126]. Thisisa
stochastic model where, in apopulation of m individuas, every individual of type
¢ reproduces &t rate B;, and the offspring, which is of type j with probability V;;,
replaces arandomly chosen individual in the popul ation (possibly its own parent).
To describe the entire population, let Z; (¢) be the random variable that gives the
number of i-individuasat timet, and Z (1) = (Z:(t)), - Hence, if Z(t) = z, and
J # k, we can have transitionsfrom z to z + e; — ex, Where e; denotes the unit
vector correspondingto j. Such atransitionoccursat rate Y. B; V;;z; 2, /m. Let us
look at theinfluence of increasing m, whence we write 7 () (¢) to indicate depen-
dence on system size. Asm — oo, the sequence of random processes Z(™) (1) /m
converges amost surely, and uniformly for every finite interva [0, ¢], to the solu-
tion of the differential equation (4) with D; = 0, and initia condition Z{™)(0)/m
(resp. itslimit as m — oo), compare [14, Thm. 11.2.1].

The linear equation (1) has a more direct stochastic interpretation in terms of
a continuous-time multitype branching process. After an exponential waiting time
with expectation 7;, an individual of type ¢ produces a random offspring with afi-
nite expectation of b;; childrenof type j (wewill not specify thedistributionexplic-
itly sincewe will not fully devel op the stochastic picture here). The matrix H with
H,; = b;j/7 thenisthe generator of the first-moment matrix. That is, if Z;(¢) is
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again the (random) number of individualsof type j at timet, and [F* the associated
expectation in a population started by asingle: individua at time 0, then
Ei(Zj(t)) = (exp(tH))...

2]

(5)

Further, with the identification y; (¢) = [E( Z;(¢)), Equation (1) then smply isthe
forward equation for the expectations. (See [2] or [27] for the general context of
multitype branching processes, and [21] for the application to mutation-selection
models.)

Important first questions concern the asymptotic properties of the systems dis-
cussed. A key tothesepropertiesistheleading eilgenvalue, Amax, Of H (i.e, therea
eigenval ue exceeding the real parts of all other eigenvalues), for various reasons.
If, on short time scales, unrestricted growth according to (1) isrelevant, then Amax
istheasymptotic growth rate of the popul ation. The stationary distribution of types
in (3) isgiven by theleft eigenvector of H corresponding to Amax. The knowledge
of Amax 1S aprerequisite for the calculation of this eigenvector. In the population
genetics context, the stationary state is often referred to as mutation-sel ection bal -
ance, with Amax asthemean fitness. Finally, and perhaps most importantly, the de-
pendence of Amax ON certain model parameters is of great interest. For example,
alot of research has been directed towards the question of how the mean fitness
changes when the mutation rate increases (i.e., when M isvaried by some nonneg-
ative scalar factor), and interesting effects have been observed, for example error
thresholds (for reviews, see [8, Ch. I11] and [13]).

In general, exact expressions for eigenvalues are hard to obtain if |S| islarge
but fixed. In recent work on mutation-selection models, however, scalar or low-
dimensional maximum principles for the leading eigenvalue have been identified
for certain examples [21,17] in a suitable continuouslimit as | S| ,* oco. Itisthe
purpose of this paper to generalize these results to a large class of operators. We
will do so under the general assumption that the Markov generator M isreversible,
which covers alarge class of mutation models; in particular, reversibility is a stan-
dard assumption in molecular population genetics, cf. [34] or [16, Ch. 13].

The paper is organized as follows. In Section 2, we will apply the Rayleigh-
Ritz maximum principleto our class of matrices. Thisleadsto ahigh-dimensional
problem, whichishardto solvein practice. An exampl e of how the problem may be
reduced to ascalar oneisgivenin Section 3. The main results are given in Section
4. Here, we identify fairly general conditions under which the high-dimensional
problem may be reduced to alow-dimensional variational problem that yields the
leading eigenvalue up to an error term of order 1/N, inthelimit N = | S| — oo.
Sections 5 and 6 are devoted to the lumping procedure. They show that a large
class of models on a type space S arises, in a natural way, from models defined
ona‘larger’ space &, by combining several typesin & intoasingleonein S. The
general framework is set out in Section 5, and in Section 6, we apply it to the im-
portant case where & is the space of al sequences over a given aphabet, and of
fixed length. Section 7 makes the connection back to the maximum principle and
shows how the lumping procedure may lead to ‘ effective’ models (on S) to which
our asymptotic results may then be applied. The Hopfield fitness function, along
with sequence space mutation, emerges as an example.
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2. Thegeneral maximum principlefor reversible generators

Let usfirst fix our assumptions and notation. Since we assume M to be an irre-
ducible Markov generator, Perron-Frobenius theory, cf. [26, Appendix], tells us
that it has a leading eigenvalue 0 which exceeds the real parts of al other eigen-
values, and an associated strictly positive left eigenvector . It will be normalized
st. Y, m = 1; then, 7 isthe stationary distribution of the Markov semigroup gen-
erated by M.

We will assume throughout that M isreversible, i.e,

7T1'Mij = 7Tij' (6)

for al ¢ and j, which also entails m; H;; = m;H;; since R is diagonal. Likewise,
due to irreducibility, the leading eigenvalue, Amax, Of H is simple; we will meet
the corresponding eigenvectorsin due course.

Let us notein passing that, due to reversibility, the equilibrium distribution =
of M isavailable explicitly. To see this, let (ki, k2, .. ., k|5|) bethe vertices of a
Hamiltonian path of length |S| — 1 inour graph G(M ), i.e, k; # k; fori # j;
such apath exists dueto irreducibility. Set 7, = 1 and, for 2 < i < |5/,

7
M, . &, o Mk

>0.
ikiot in Mg i

Then, as an immediate consequence of (6), m; = 7i/(3; 5 7;) isthe stationary
probability distribution of the Markov generator M ; in particular, the choice of the
path isarbitrary, which reflects the path independence of reversible Markov chains.

For ¢ # 7, we now define
b
VT

where the symmetry follows from the reversibility of M. Clearly, F;; > 0 and
Fij = (Fiiji)l/z = (Miiji)l/z. As aconsequence, the matrix

Fi; = /mi Mij = Fj;, (7)

H:=1Y*Hp-/? (8)

with IT := diag{m; |7 € S} has off-diagonal entries F;;, is symmetric and has
the same spectrum as H , with correspondingly transformed eigenvectors. We now
decompose H in the same way as we did with H in (2), namely into a Markov
generator F' plus a diagona matrix E£. To thisend, let F' = (Fj;); jes With Fy;
asin (7) fori # j, and complete thisby Fi; := —3 ¢ g\ () Fij- With E; :=
R; + M;; — F;;, onenow han{” = Fij + Ez(sw for dl 1,] €S, i.e,

H=F+E (9)

with F aMarkov generator and E' = diag{E; | i € S}.
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Thisnow allowsusto formulateasuitabl e variant of the Rayl eigh-Ritz (or Courant-

Fisher) maximum principle for the leading eigenvalue of H, compare [32, Thm.
19.4]. Clearly,

Amax = sup E v Hijv;
. 2_
v 4es V=1 4 5e8

= sup ( Z v; Fijv5 + Z Ekv,ﬁ) s (20)

U:ELGSUZ:]' ij€S kes

where we have used the decomposition (9) in the second step. Note that the supre-
mum is, indeed, assumed, since the space of probability measures on S is com-
pact. The maximizer, i.e., thenormalized principal eigenvector of H, isuniqueand
gtrictly positive (since the same holdsfor the corresponding el genvector of H), so
that the above may also beread asan L! variant through the substitution ; := vZ.

Notethat, since F isaMarkov generator, thequadraticform ), . s vi Fi;v; is
negative semidefinite with maximum 0, which is assumed for the stationary distri-
bution of F' (since F issymmetric and irreducible, thisis the equidistribution, and
unique). We thus have a simple upper bound on A4

Amax < sup Z Ekvk = maxEk , (1)
v Ezes 4—1 kesS

while we can obtain alower bound for any v > 0 with}", vZ = 1 via

Z UZ'FZ']'U]' + Z Ekv,f < Amax - (12)

3,jES kesS

Even though each step of the above derivation is elementary, it is worthwhile
to summarize the findings as follows.

Proposition 1. Let S beafiniteset, andlet H bean |.S|x|.S|-matrix with decompo-
sition H = M + Rinto anirreducible and reversible Markov generator M and a
diagonal matrix R. If = isthe stationary distributionof M, H can be symmetrized
to H = MY2HIT-Y2 with IT = diag{m; | i € S}. Thematrices H and H
are isospectral, and their leading eigenvalue Apax iS given by the maximum prin-
ciple (10). Furthermore, simple upper and lower boundsfor Amax are provided by
Egns. (11) and (12). O

It is our aim to identify conditions under which the inequality (11) becomes an
equality, at least asymptotically as | S| — oo.

Asalfirst step, consider the maximizer of (10), i.e., the principal eigenvector w
of H, normahzedwazles w?=1. S|nceH|ssymmetr|c wehavewH = ApaxW

and, simultaneously, Hw”? = Apa,w? . Hence,
2=, I7Y2%wT and b= cpwll*/? (13)

arethe principal right and |eft eigenvectorsof H = IT-Y2HII'/2. We will adjust
theconstantsc, and ¢, st. >, h; = Y. hyz; = 1; clearly, thisimpliese, - ¢, = 1.
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The vector h gives the stationary distribution of typesin Equation (3). Further,
itiswell-known that, for irreducible H and ¢t — oo, thematrix exp (tH — Amax1)
becomes a projector onto /, with matrix elements z; h; (compare [26, Appendix]).
Therefore,

) Yies (exp (tH))ij > jes %l
Emroo Zk,les h’k(exp (tH))kl ELES hy

With (5) in mind, z; may therefore be understood as the asymptotic offspring ex-
pectation of an 4 individual, relative to the mean offspring expectation of an equi-
librium population. If B = C'1 for some constant C, we have z; = 1, inlinewith
thefact that H — C'1 isthen aMarkov generator.

From (13) aong with the normalization of & and z, the relations

T2

>ies Ti%
are obvious. In particular, with
a; = w? = h;z >0, (16)

we obtain the corresponding Z*-maximizer of (10).
To arrive at another interpretation of a, consider the Markov generator @ with
elements

Qij = 2, '(Hij — Amax645) 2 - (17)

Itiseasily confirmed that @ isindeed aMarkov generator (i.e., @;; > 0 fori # j,
and Ej Qi; = 0). Using (15) and reversibility, one observes that Q may aso be
rewritten as

Qij = hi '(Hji — Amaxbij ) hj . (18)

In the form (18), @ is the generator of the backward process on the station-
ary distribution as described in [25, Corollary 1] for general multitype branching
processes, and used in [21] in the context of mutation-selection models. Loosdly
speaking, ¢ describes the Markov chain which results from picking individuals
randomly from the stationary distribution » and following their lines of descent
backward intime. Eq. (17) isthe corresponding forward version asused in[24] and
[19]. Itisimmediately verified that ¢ has principal left eigenvector (i.e., stationary
distribution) . Thisisknown as the ancestral distribution of types; its properties
are analyzed in [19]. Let us summarize as follows.

Proposition 2. Let theassumptionsbeasin Proposition 1. Then, the principal eigen-
vector w of H gives the principal left and right eigenvectors of H and their mu-
tual relations through Egns. (13) and (15). The L*-maximizer a = (a;);es Of (10)
admitsthe interpretation of an ancestral distribution asthe stationary state of the
backward Markov generator @ of (17) and (18). O
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3. A scalar maximum principle: An example

The maximum principle (10) is not very useful in practiceif |S| islarge but fixed,
since maximization is then over alarge space. In [21], this high-dimensional max-
imization could be reduced to a scalar onefor specia choices of M and R. We will
re-derive thisresult here in asimplified way, which will also lead the way towards
themore general methodsand resultsweareaimingat. Let S = {0, 1, ..., N} with
the following mutation scheme;

+

+ + +
0 &2 0 & = - ] &= ]

U U, Uk t1
Suppressing the (relevant!) dependence on NV in the notation, we then have
M1 =UF, Mi;_1=U (19)

fori € S, whereweset Uy = Uy = 0. Thisisavariant of the so-called single-
step mutation model of population genetics [8, Ch. 111.4]. It emerges if sequences
of sites (nuceotidesites or loci) are considered, and the ‘type’ isidentified with the
number of sites at which the sequence differs from a given reference sequence or
wildtype; see [33] for arecent application. If fitness is a function of this number
only, and if mutations occur independently of each other in continuous time, we
are in the setting of the single-step mutation mode.
Hence, for all ; € S, we have

Fiip1 = (MiipaMiy1 )2 = (U{i_Ui:_l)l/z = Fiy1: (20)
with the obvious meaning for ¢ = 0 and ¢ = N; aso, Fy; := 0 whenever either
iorjisnotins, orif|i — j| > 1.In order to evauate the lower bound in (12),
let N belarge, 1 < L « N,and £ € S. We will use the simple test function
v := (vo,v1,...,vn) defined through

o 0, i¢g ((+[-L,L)NS
BTN, e (t+-L L) NS

with[-L, L) :={-L,—-L+1,...,L — 1, L}, and the constant ¢, chosen so that
>, vi = L.Thatis, v isanormalized step function around ¢, which does not extend
beyond 0 or N. If £ + [-L,L] C S, onedwayshasc, = 1/(2L + 1); ashort
calculation showsthat, in any case,

1 1
<ep < ——
1SS

dueto L « N.Withy; = v?, the quadratic formin (10) and (12) reduces to

Z v Fiju; = ¢ Z Fij = —c)(Fo—pp-n—1+ Feqrp4041)
1,J€ES 1,J€4+[-L,L]
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due to the tridiagona nature of the Markov generator F. Since %(FL_L,l_L_l +
Foppprp41) S max; F 11 = max; jes Fij =t Frax, ONehas

2Fmax
‘ Z UZ'FZ']'U]'| < L+1 . (21)
1,j€S

On the other hand, the second term in (10) resp. (12) (to be called the ‘ diagona
part’ in what follows) becomes

L+ L
S Bl =c 3 (Ri _UF U+ \/U;Uijrl n \/U[Uitl) . (22
1ES 1=4—L

where U := 0 isimplied whenever i ¢ S.
We now assume that
Ur = u®(2;)+ O(1/N) and R; =r(z;) + O(1/N) (23)

K

with continuousfunctionsut, v =, and » on[0,1], and the new ‘typevariable z; =
i/N; itisfurther implied that the constant inthe ©(1/N) bound is uniformfor al
i. (Eq. (23) differs from the scaling in [21] by a global factor of N, which means
nothing but a change of thetime scale.)

Define g(z) := ut(z) + v (z) — 24/ut(z)u(z), let z* be a position at
which r(z) — g(x) assumes its supremum, and choose ¢ := | Nz*|. With an ap-
propriate scaling of L (such as L ~ +/N, to be specific), the right-hand side of
(21) isO(1/+/N). In (22), the sum has O(v/N) terms, which is balanced by ¢, =
O(1/+/N); together with (23), thisturns the right-hand side of (22) into r(z*) —
g(z*) + O(1/N). At the same time, the upper bound in (11) also behaves like
r(z*) — g(z*) + O(1/N). Teking everything together, we obtain the asymptotic
maximum principlefor N — oo:

Amax = Sup (r(m) — g(x)) (24)
z€[0,1]

upto @(1/v/N).

Finally, recall from Section 2 that, for finite NV, the maximizer of (10) isunique
and given by the ancestrd distributiona = (h;2);es. However, in the limit as
N — oo, Uniqueness may belost, which isalso reflected by the fact that the supre-
mum in (24) may be assumed at morethan one point. Inthese degenerate situations,
error thresholds may occur [21].

Remark 1. The maximum principle derived in [21] aso holds for functions r and
u* with afinite number of jumps. This can be dedlt with in the current framework
with dightly more effort, but we avoid this here to keep the exampl e as transparent
as possible.

Remark 2. With a more careful choice for the scaling of L, one gets the quadratic
form (defined by thematrix F)) downto O (1/N'~¢) for arbitrarye > 0,but O(1/N)
is only obtained with the help of better (smooth) test functions. Thiswill now be
done.
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4. Asymptoticsfor theleading eigenvalue

The maximum principle allows for an asymptotic estimation of the leading eigen-
valuewhentheMarkov generator F' can be consideredas‘small’ in asuitablesense,
in comparison to the derived effective ‘diagona’ part. Before stating precise con-
ditionsand results, let us briefly discuss the heuristics behind this. Due to the sym-
metry of F', we can rewrite Eq. (10) as

Amax = sup (— % Z Fij(v; — vj)2 + Z Ekvﬁ) . (25)

v} esvi=1 i,5€8 keS

Thus, it is obvious that the F'-term favours constant » while the diagona F-part
favours v that are concentrated on the points £ where £, is maximal. Clearly, the
outcome of this competition depends on some concentration and smoothness prop-
erties of the matrices involved.

For simplicity, let us now assume that our set S consists of integers or, more
generally, d-tuplesof integers. So, S C Z¢, with | S| < oo. Wewill now ook more
closdly into the situation where |S| ,* co. Consider afamily of sets

S=S(N), Sc7% sotha |S|~N¢ asN — oo, (26)

where we suppress once again the dependence of S on N. A reasonable setup is
then obtained if & - S C D, where D is acompact domaininR¢, + - S becomes

densein D for N — oo, and there exist functions E and f;, from CZ (D, R) with

r= () +o(3) @
and . )
By () +0 (%), @

where k = j — 4, and the constant inthe ©(1/N) bound is uniformfor all 7 and j.
More generally, onecan replace O(1/N) in(27) and (28) by O(1/n(N)) for some
function n(N) that growswith NV, if that better suitsthe individual situation.

Our mainresult will bethefollowingtheorem. For S C Z¢, wewill usethrough-
out the dightly abusive notation S — j := {i — j | i € S}.

Theorem 1. Assumethat £; and F;; areasin Eqns. (27) and (28) . Assume further
that the CZ(D, R) function E assumesitsabsolutemaximuminint(D), and that f
satisfies .
> h(x) k2 <C (29)
) N L1 m X
keS—=

for some constant C, uniformlyfor all 2 € S, and 1 < £, m < d. Then, there exist
constants0 < C’, C” < oo such that

Cl CII

B(2") = 7 € dmax < B(27) + (30)

where z* is a point where E'(z) assumes its maximum.
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Remark 3. It will become clear when we proceed that the condition on the deriva
tivesof E(z) and the fi (z) may be relaxed; it isindeed sufficient that these func-
tionsbe CZ locally, in a neighbourhood of z*.

Note that the upper bound is clear in view of Eqgns. (27) and (11) (recall that
the quadratic form defined by F' is negative semidefinite); it can be made sharper
if the order of the approximationin (27) and (28) isimproved. It remainsto prove
the lower bound (which cannot be improved by sharpening the O(1/N) in (27)
and (28)). We will do so by evaluating the quadratic form in (25) for a sequence
of test functions of Gaussian type centred around z* in the interior of D (and ap-
proaching a Dirac measure located at #* with increasing V). Specifically, we will
use throughout

I — ce_o‘Nli/N_m*|2 withe = C(N) st. Z Uiz =1, (31)
i€S
where o > 0 isapositivereal number independent of V.
We will first consider the diagonal part and show

Proposition 3. Let £; beasin (27) and z* be a point in the interior of D where
E(z) assumes its maximum. Let the v; beasin Eq. (31). Then,

1
22— * =
> Bl = E(a) + (’)(N) .
1€ES
The upper bound inthe proposition being immediate, we only need to provethe
lower bound. We will use the following fact.

Lemmal. Letg: R — IR >0 be a non-negative, continuous, integrablefunction
withg(z) < C/(1+|z])%** for all z, and (fixed) positive constantsC and e. Then,
for any z* € R4,

nli)ngo % Z g(% - nm*) = /]Rdg(x) dz. (32
i€74
Proof. Note first that the sum in (32) exists for arbitrary, but fixed n due to the
assumed decay condition for g. Let b, := Xzzl(—l/Zn, 1/2n]. Then, one has
RE = Uiezd(i/n + b,,), and, for al z, thereis a (unique) eement ~ of Z%/n with
x € v + by; thiswill be called 4, (). We now define

gi(x) = sup  g(z), gn(z):= (2) .- (33)

inf g
2€(Yn(2)+bn) 2€(Yn (2)+bn)

Since integration over R¢ isinvariant under a shift of argument, and g are step
functions, we have

/]Rdgﬁ(x)dx: /]Rdg;(x—m:*)dx: % Zg;(i/n—m;*)

i€Z4
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<o Y glifn—nat) < o Y gii/n—na) (39

i€Ze i€Z4

:/ gi’(x—nm*)dm:/ gl (z)dz.
R4 R4

Bothg;F and g;; convergeto g pointwise(sinceg iscontinuous). Further, g (z) are
both bounded from above dueto the properties of the assumed majorizing function,
and hence [;. g, (z) dz and f;.g; (z) dz both convergeto [;.g(z) dz asn —
oo by the dominated convergence theorem. But then, the same must be true of the
sum in (34), which proves the assertion. O

We will use the following immediate corollary.

Corollary 1. For any non-negativeinteger £, and any a > 0

3 k
. (k—d)/2 v |7 —aNi/N=z*? _ k —alz|?
Nll_l)l(l)oN Z N e = ]Rd|x| € dz. (35)
i1€Z3
Proof. UseLemma 1 withn = +/N and g(z) = |z|Fe~2l=I”, m
The following is a simple consequence of the preceding corollary.
Lemma?2. Forany A C Z¢%,6 > 0andk € N,
; k . 12 2
N(k—d)/2 Z % _ %] e—2aNJi/N-z"|? _ O(e—aNJ ) (36)

| GEA:
[i/N 2|6

Proof. Just note that

NG-a2 3

| GEA:
[i/N=2 |25

—alN§? —
< e N N(k d)/2 Z
i€Ze

i

k
e—2aN|i/N—a:*|2
N

*

1
——=

N

*

k , (2
e—aN|z/N—a: | (37)

and apply Corollary 1 to the last expression to get the assertion. O

Thisyieldsavariant of Corollary 1:

Corollary 2. Corollary 1 holdstruewith Z replaced by S(N) of (26).

Proof. Sincez* € int(D), we may choosead > 0 sothat Z2\ S(N) C {i € Z¢:
|i/N —x*| > 8}. Then, thedifferencein thesumin (35) is(’)(e‘“N‘SE), according
to Lemma 2, with 4 = S(N). O

We are now ready to prove Proposition 3.
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Proof. Since we may write

1
— -2z

N

ky, 1 N(k—d)/2|l'/N_x*|ke—2aN|i/N—m*|2
Vi = NE/2 Nd/2 Zjese—2aN|i/N—m*|2 ’

*

Lemma 2 and Corollary 2 entail that, for & > 0,

> |x oo = o) (38)
1€ES(N):
[i/N—2* (35
and ] . .
L4 *
1€ES(N):
|¢/N—z*|<$

So far, we have only used that z* isinint(D). But z* isaso a point where E(x)
assumes itsmaximum, and F () istwice differentiablein a neighbourhood of z*.
Hence, thereexist § > 0 and 0 £ C' < oo, such that for al |z — z*| < §, E(z) >
E(z*) — C|z — z*|2. Therefore,

Sar=o(g)r ¥op(y)er Tos(y)d

i€S AH AH
|[¢/N—z*|<8 |[¢/N—z*|26
2 7 2
> @) (110 ) o [ a e
1€S:
|[¢/N—z*|<§
1
o(§) rip ) X2 o

1€ S:
li/N—-z"|28

i} 1
where we have used (27) along with normalization in thefirst, (38) in the second,
and (38) and (39) inthelast step. This provesthe assertion of Proposition3. O

After dealingwiththediagonal part, weare now ready to embark on thequadratic
form.

Proposition 4. Let F;; be asin (28), and assume that f satisfies condition (29) of

Theorem 1. Then,
1

Z UZ'FZ']'U]' = O(N) .

2,jES
Proof. Evaluating thedifference between |i/N —z*|? = (i/N —z*,i/N —z*) and
lj/N—z*|? = (j/N—z*,j/N—z*), wefirstnotethat |j /N —z*|?—|i/N—z*|? =
((i +j)/N —2z*,(j — i)/N) (here, (., .) denotesthe scalar product). In view of
v; = ce~oN{i/N-2"i/N~z2") gnq withj =i + &,

. 2i+ k .k
Ui>vi+k<:>77(lak)::< N —2x,ﬁ>>0
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(notethat n(i, 0) = 0). Usmg Fij = Fji (SP,E (7)), (Ui — Uj)z = (Uj — Uq;)z, and
Fiite = fe(i/N) + O(1/N) (see (28)), we can rewrite the quadratic form as

Z v P05 = —% Z Z Fyigr(vi — vigr)®

1,5€S i€ES kES—1

:—Z Z Fiivn(v; — vigr)?

1€ES keS—1
n(i,£)>0

Dl S (XCH R S) [

1€S keS—1:
n(i,k)>0

We have thus achieved that the summation includes only terms where v; > v,
which entails that

Vi — Vitp = ce—aN|i/N—a:*|2(1 _ e—aNn(i,k)) < caNe_"‘NWN_“:*'zn(i, k),

sincel — e ® < min(z,1) < z forz > 0 (of which we only use the latter in-
equality). Together with the fact that the quadratic form is negative semidefinite,
thisgives

1
0> —5 S Frognlvi — vigs)’

1€ES kES—1

Z—aer"va Z (fk(%)_|_(’)(%))(n(z,k))2

i€eS  keS—ix
n(i,k)>0

>Nl 3 (5(x)ro(3))Gm)?. @

In the last step, the constraint on the sum could be removed since we added to the
sum nonnegative terms only: fx(i/N) > 0 for k # 0, and (n(3, k))2 > 0 with
equality for k = 0.

We now notethat (29) entailsthat, for 1 < £, m < d,

> nly arys > aly ke, ad S () KER/N

keS—1
(41)
areall bounded from aboveby apositiveconstant C (thelatter caserelieson S/N C
D with compact D). Writing

(nti k)" = (2( 5~ =) + % %>2

- 55 e =0 (g ) ' <

,m_

allows usto bound the various parts of the sumin (40) asfollows:
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X Y () D bk (i) (- a2

1€ES keS—= {m=1
Ed: 2 : im * 2 2 1
_4Cdm:1ies (N — Q}'m) U’i = O(N) s (42)

where we used the Cauchy-Schwarz inequality for

> k(e -a1) () <2 2 (- 5)'

{m=1 m=1

(41) inthefirst, and (38) and (39) in the last step.
Again, with (41), (38), and (39), we obtain

Dy > iy )klk (ﬁ‘”f?)

1€ES dm=1keS—=

=0(5e): @

where we further used that Zlem/N — x;| < ¢|i/N — z*| for some positive
constant ¢. Finaly, (41) also givesthat

D PP INACHL

k2 1

om 0(—). 44
' ' N2 N (44)
1€ES dm=1keS—=

Combining (42), (43), and (44), we arrive at the assertion. O

i€S =1

Remark 4. Eqg. (44) is the reason that the lower bound in (30) cannot be improved
by better approximationsin (27) and (28).

Remark 5. We have, so far, assumed that * isin theinterior of D. If 2* ison the
boundary of D, a similar approach may be taken with a one-sided, exponentialy
decaying test function. Theerror in the approximation will, however, belarger than
in the case tackled here.

In both cases, much finer results can be obtai ned using more advanced methods
of perturbation theory [28], which, however, require much more work.

So far, we have used the Rayleigh-Ritz variational principle (10) to obtain re-
sults on the leading eigenvalue of H, but said nothing about the maximizer (note
that thisneed not coincide with thetest function v). Recall from Section 2 that, for
finite V, the maximizer is unique and —inits L version — given by the ancestral
distributiona = (h;2;);¢ 5. Actualy, from the boundsabove, we can also conclude
that « is concentrated in a neighbourhood of z*, where the size of the neighbour-
hood depends on the behaviour of £ near its maximum. In the generic case of a
quadratic maximum, « is concentrated in a region with awidth of order 1/+/N.

More precisely, we have:
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Theorem 2. Let E; and F;; satisfy the hypotheses of Theorem 1. Assume that £
assumes its maximum at a unique point * € int(D), and that the Hessian of E at
z* ispositive definite. Then, for every 0 < 8 < 1, thereisap > 0, independent of
N, sothat, for N large enough:

Z ai<ﬁ7

1ES:

li/N—z"24/0/BN
where o isthe ancestral distribution (of (16) and Prop. 2).

Proof. Recall first that the (L?) maximizer of (10) isgiven by w = (1/ai)ses (cf.
(16)). Hence, by Theorem 1, the negative semidefiniteness of F', and (27), we have

7
E(x*) — N < Amax = Z wiFijwj + ZEZLUE
4,j€S i€S (45)
1
2 — * —
< %;ElwZ < %%XEZ E(z")+ (’)(N) .
Now, consider E(z) inaneighbourhood of z*. Sincethe Hessian at «* is positive
definite, we have E(z) < E(z*)— C|z —z*|? for some C > 0 inaneighbourhood
of z*. For e small enoughand é(¢) := /¢/C, therefore,

Ba),  Jo—ot] < 8()
Ble) < {E(x*) —e, |e—z*| > d(e).

Together with (27) and (45), thisimplies

1 1
E(x*)—i—(’)(ﬁ) = E E;w? < E(z*) —¢ E wf—i—(’)(ﬁ)
€S 1€S:
i/ N—z"|26(c)

Hence, for some positiveconstant 7, 0 < € 32,1, /v —z+|36(c) w? € v/N. Choos-
inge = v/BN givesthe assertion. O

Remark 6. For notational simplicity, we have assumed abovethat E () assumesits
(absolute) maximum at a unique point z*, which is the generic case. It is obvious
from the proof, however, that an analogous result holdsif the maximum isassumed
at afinitenumber of points (each with apositivedefinite Hessian). Then, the ances-
tral distributionis concentrated on the union of the corresponding nei ghbourhoods
of these points (or a subset thereof), again with widths of order 1/+/N.

Let usreturnto thecase where E () assumesits(absol ute) maximum at aunique
point z*. We have seen that the ancestral distribution concentrates around z* for
N — oo, inthe sense that any given fixed fraction 3 (or even more) of the distri-
bution’s mass is contained in a region whose width decreases with 1/+/N. Since
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thisistruefor arbitrary 3, itisclear that the ancestral distribution must approach a
point measure located at z*. As a consequence, the mean ancestral type, >, z;a;,
converges to z*, which adds some interpretation to the scalar maximum principle
in Theorem 1; for further details, see [21].

5. Lumping

So far, we have not specified thetypespace S. Intheexampl e of Section 3, thetypes
weredefined interms of someintermediategenetic level that could bederived from
amore detailed picture. InthisSection, wewill show that alarge class of modelson
atype space S can be derived, in a natura way, from models defined on a‘larger’
space & (to be called genotype space) if the branching and mutation ratesfulfill cer-
tain symmetry or compatibility conditions. The idearests on the common assump-
tion that fitness depends on the genotype through an intermediate level of *effec-
tive' parameters (which may, for example, be ‘ phenotypes’, or ‘genetic values' in
quantitativegenetics), and the mapping from the genotypeto thisintermediatel evel
ismultiple-to-one. Onewill thereforetry and combine several of the genotypesinto
asingleone; if thisisalso compatiblewith the mutation scheme, areduction of the
number of dimensionsis possible. In thetheory of Markov chains, thisapproachis
known as lumping [29, Ch. VI]. We will proceed in two steps: First, the lumping
procedurewill be described in an abstract setting, with arbitrary genotype and type
spaces & and S, respectively. In a second step, we will specialize to the concrete
sequence (or multi-locus) picture.

For thefirst step, let & be a possibly large, but finite set. In analogy with (1),
consider the dynamics

p=pM+R) (46)

onRI®! with M aMarkov generator and R = diag{R, | ¢ € &}. Consider a
mapping
p: & — S=imy) (47)

so that & may be understood as the disjoint union of fibres ., :

6= UmES B, With @, :={0 €& |plo) =m}=¢ 1(m).

We will now give conditions under which the dynamics (46) may be reduced to a
dynamicson S. Thefollowingresultisavariant of atheorem by Burke and Rosen-
blatt [9], see aso [29, Chapter VI].

Theorem 3. Let & and S befinite, let ¢ be the mapping of (47), and assume that
thereare matrices M = (Mym)n,mes and R = diag{R; | ¢ € S} with

Ro = Ry(0) forall o € G, (48)

Y Moy =Myo)m foraloes, mes, (49)
TEPm
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where M isthe Markov generator of Eq. (46). Then, M isa Markov generator on
RISLIf p solves (46), then

Ym = Z Po (50)

cED,,

satisfies the differential equation (1), i.e, gm = Y., Yn(Mnm + Rnbnm). If M
isreversible with respect to 7 = (75)oece, M iSreversible with respect tom =
(Tm)mes, Where my, = > 5 7. If M + R has principal left eigenvector h,
then M + R hasprincipal left eigenvector & with A, = > h

cEd,, o

Proof. The proof is a straightforward verification. Note first that M is a Markov
generator (on R!S1), because, for any o € &,,,

5 Mo = 30 3 Mar = 30 Mar = 0,

nes neSred, TES

since M isaMarkov generator.
Starting now from (50) and (46), we find

Um = Z Po = Z ZPT(MTO' +R7'67'a)

cESm c€EPm TES

Yo > pr(My(rym + Ro(r)Sg(r)m)

nesS red,

= Z yn(Mnm + Rn(snm) s
nes

where we have used (48) and (49) in the second step, and (50) in the last, together
with the fact that both M,y ad Ry (7)dy(r),m are constant on every fibre &,,.

Finally, theassertionson stationary distributionsand reversibility aredirect ver-
ificationsin the same spirit. O

6. From sequence space to type space

In this Section, wewill be more explicit and start from sequence space. The natural
scheme that will emerge involvesthe grouping of sequence positionstogether with
a‘coarse-grained’ dependence on some ‘ genetic distance’ . Many of thefrequently-
used models fal into this scheme. Related results appear in statistical physics, cf.
[7,6], from where we will borrow some techniques.

Let us begin with the general setup for a mutation-reproduction model on se-
guence space. We will assume that the type o of an individual is characterized by
a(DNA, RNA) sequence which we take to be an element of the space & := XV
with X = {1,...,¢}; wewritec = (o1,...,0n). For generdity, we let ¢ bean
integer > 2;if ¢ = 2, thedternativechoice X = {—1, 1} isoften more convenient.
Consider now the partition of theindex set A = {1, ..., N} intod digoint subsets
Ai, i.e.,

A= Ulggd A;. (51)
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Let P(X) = {(p1,--+,1tq) | e > 0,3, e = 1} denote the set of probability
measures on Y. Set, with obvious meaning,

1 2 1 q
/PA,;(E) = P(Z) n {0, m, m, ceey 1— m, 1}
and
d
Plas,sta)(D) = Q) Pac(2) . (52)
=1

Thatis, Pa4,,...,4,)(2) istheset of product measures with val ues restricted to cer-
tain rationalsinduced by the partition.

Consider now the mapping (which will take the role of ¢ from the previous
Section)

m: 2V Q4 o m(o) (53)
withm(e) = (mé(0))}Srs2 and
, 1 1.
mi (o) == T Z 8,0, = T i lje A,o; =8} (54)
*liea; *

So, mf (o) isthefraction of thesitesat positionsin A; which arein state £. Notethat
thesequantitiessatisfy 3°7_, mf(o) = 1,i.e, foreachi, m;(c) := (m}(c),..., m{ (o))
defines a probability measure on X, withm; € Py, (X).

Describing the system in terms of these lumped quantitieswill only lead to a
simplification in connection with a suitable symmetry. In our case, thisisgiven by
those permutations of the sites that are compatible with the chosen partition.

Let I'y bethe permutation groupon A = {1,...,N},i.e,

I'y:={y|v: A— Aisabijection},
and I{4,,...,4,) the subgroup compatible with the partition (51), i.e.,
Tiagynns) = {7 €Ty | ¥(A) = Ai, 1 i K dp = Ty X oo X Ty

We introduce the canonical action of the permutation group on X% through the
inverse permutation of sites, i.e., (yo); = oy-1(;y. We are now ready for

Theorem 4. Let XN = {1,...,¢}",andmatricesM = (Mg 1), resv andR =
diag{R, | ¢ € X¥} be given, with M a Markov generator. Let p solve p =
p(M+R). Further, let mbeasin(53),and S = m(£V) C Q%. Assume nowthat
there exist a functiong: IV x IV —s Ry, and matrices M = (Mynn)mynes
and R = diag{R,, | n € S}, so that the following conditions are satisfied:

@ g(v7,70) =g(r0) forally € Ia,,.. 405
(b) Mor = Mu(o)m(r)g(o,7) foralo,re N
(©) Ro = Ry foraloe XV,
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Then, ym := e, Po SOlVesthedifferential equationy = y(M + R), where

Mnm: Anm Z g(O’,T)

TEPm

independently of thechoiceof o € &,,. M isaMarkov generator. If M isreversible
withrespect to 7@ = (75 )oe s, then M isreversible with respect to 7 = (7 )mes
where m,, = Zaeém 7s. If M+ R hasprincipal |eft eigenvector & = (ho)oes,
then M + R has stationary distribution & = (hm)mes Withhm =3 5 ho.
Proof. Fory € I'i4,,...,44), WEhave

m(yo) =m(o) and (&) =2V, (55)
where the first identity is obvious from (54). Equation (55) entails that

YV (Pm) = P, (56)

i.e, I(4,,...,4,) &Ctstransitively on @,.

Inorder to apply Theorem 1, we haveto check assumption (49). Consider there-

fore}  cs Mor = Mu(o)m D ores,, 9(0, 7). Forabitrary y € I'y,,... 4,), &
sumption (8) and Eq. (56) give

Ylo)i= > glo,m)= > glyo,y7)

TEPm TEPm
= Y. 9w, 7)= Y g(r0,7) = ().
7' EY(Em) T'EPm

Dueto thetrangitivity of I'4,,....4,) ON @, 1(0) isconstant on thefibres @, (,y.
Assumption (49) istherefore valid, and an application of Theorem 1 then givesthe
desired result. O

Examples of particular relevance emerge if g isa I'(4,,..., 4,)-invariant distance,
such as the Hamming distance (i.e., the number of sites at which two sequences
differ). A very simple case was implicit in our example in Section 3, where the
single-step mutation model on S = {0,1,..., N} was interpreted in terms of a
model on {0, 1}¥V. Here, asitein state 0 or 1 correspondsto asite whose state does
or does not coincide with the respective state of a reference sequence (sometimes
called the ‘wildtype'). If the reproduction and mutation rates only depend on the
Hamming distance from the reference sequence, we arein asetting withd = 1. In
such asimple case, the reduced model isimmediate. More el aborate examples will
be discussed in the next Section.
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7. Applicationsand examples

In many examples of sequence space model s, thelumping construction as described
in the previous Sections leads to an effective model to which the maximum princi-
pleof Section Section 4 may then be applied. In particul ar, thefollowing conditions
are necessary for Theorem 1 to apply:

(C1)

The partition {A; }¢_, in (51) isrelatively uniform, in the sense that there exist
constants 0 < ¢ < C < 1 such that

|43 |43
— < sup — < C

c < inf
~ . ~
1gigd NV 7 1giga

uniformly in N. (Alternatively, thismay bereplaced by the single, and slightly
weaker, condition lim infy o infigiga ";;" > 0; notethat }",|4;| = N by
construction.) This condition ensures that # = /N will become a meaningful

continuoustype variablefor N — oo.

For the following two conditions, a suitable enumeration of the elements of S is
required to ensure an appropriate representation of the matrices M and R.

(C2)

(C3)

Thefunctiong that occursin the sequence space mutation matrix and isrequired
inthelumping procedure (see Theorem 4) decreases sufficiently fast away from
the diagonal . Note that under condition (C1), for any o, = we have that

dn(o,7) 2 5 |Im(e) — m(r)l

where dy isthe Hamming distance. Thus, if ¢ has compact support indepen-
dent of N (asintheexamplein Section 3), or if it decays sufficiently fast (e.g.,
exponentially) with dgg, thisentailsthe decay conditionon f in Theorem 1.
After lumping, the effective reproduction and mutation matrices R and M must
lend themselves to a continuous approximeation. That is, R, = r(m/N) +
O(1/N) and My, = s(m/N,n/N) + O(1/N) with functions r and s that
ae Ct(D,R),wheretheimplied constant inthe ©(1/N) bound is uniformfor
al m and n. This entails the approximation conditionon £ and ¥ in (27) and
(28) that is also required for Theorem 1.

Clearly, (C2) and (C3) stipulate that the enumeration of the typesis adapted to

the problem. Often the right choice isintuitively clear, asin the examplesin Sec-
tion 3, and in [17]. But sometimes more thought is required, as will be illustrated
by means of afew examples and specia cases below.

1.

Some simplificationsarise in the case ¢ = 2, wherewe now use > = {-1,1}
rather than {0, 1}. Here, the constraint m} + mZ = 1 can be used to reduce the
number of variables per subset to one. Itisconvenient to set b; = m} —m2. Eq.
(52) isthen replaced by

d
2 2
Plsrents) () = @1, =14 T 1= 1)
i=1 * *
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and we obtain the simple formula

bZ(O') = |/i| Z gj.

JEA;

. Thecase d = 1 corresponds to so-called ‘ mean field models'. They have been

studied in the case where g(o, 7) = 0 for du(o, 7) > 1, i.e, mutationisre-
stricted to neighboursin sequence space (see[3,4,37,5,21] for ¢ = 2, and [22,
17] for ¢ = 4).

. A gpecial typeof modelsthat fallsinto the above classisrelated to fitness land-

scapes based on Hopfield Hamiltonians. These are specia cases of spin-glass
models [31] that were originally motivated by neura networks, then became
prototype models for random interactionsin statistical physics, and were later
also used as tunably rugged fitness landscapes in biology [30,35]. We adopt
from [6] the lumping procedure for the case ¢ = 2 (the general settingg > 2
can befoundin [18]). We consider thesequence space & = XV = {1, 1}V,
A Hopfield Hamiltonian is constructed by choosing at random M independent

dementsér, ..., €M from TV . Given such a choice, one defines
1 M N M 5
Hy (o, &) := N Z Z O'iojfff;f = NZ (wu(0))",
p=14,5=1 p=1
where

1 a I ! 24
wy(o) = Nzoifi =y {o.¢).
1=1

It is convenient to associate with the collection of row vectorsé# the M x N
matrix £ = (€£)1$4Sy - Wedenoteby ¢+ therowsand by ¢; thecolumnsof this

matrix. A partition A4, ..., Ag withd = 2™ isnow obtained as follows. Let
e1,...,eq (e = (ef)*<#SM) denote an enumeration of all M -dimensional
column vectors with entries 1. Then we set

Ak::{iEA|Ei:6k}.

Thisresultsin

d d
1 1
wu(o) = ﬁZeZ Z 0; = NZ|Ak|eZbk(U)a
= 1EAg k=1

k=1

and so
d

Hn(0,6) =N D ehef|AellA]by(0)by(0)

pu=1lk,l=1

isafunction of 4;(c). Thus, if we consider reproduction and mutation rates of
theform

Moy = a(Hy(0,€), Hn(1,€)) (o, 7),
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Ro = B(Hn(0,€))

with a nonnegative function « and any rea function 3, we may apply Theo-
rem 4 to derive the effective dynamics with lumping according to the values
of b; (o). In particular, the choice 3(x) = = givesthe familiar Hopfield fitness
landscape, and () = 1 dongwithg(o, 7) = pfordg (e, 7) = 1,g(o, 7) = 0
fordg(o,7) > 1,andg(o, o) = —2N p yieldsthewell-known sequence space
mutation model where every site mutates independently and at the same rate i
(e.g., [5]).

8. Concluding remarks

The motivation for thiswork came from continuous-time mutati on-sel ection mod-
els, cf. (3) and (4). However, it should have become clear that our resultsare not tied
tothese specific models. They a so holdfor thecorresponding discrete-timedynam-
ical systems, or if thereisno underlying dynamicsat all. Our main result (Theorem
1) simply yields asymptotic estimates for the leading eigenval ues of large matrices
that possess a certain continuous approximation, and whose el ements decay suffi-
ciently fast away from the diagonal. These propertiesare shared by many systems,
in particular, by many spatially extended systems, where interactions between dis-
tant components are weak.
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