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An asymptotic maximum principle
for essentially linear evolution models

Abstract. Recent work on mutation-selection models has revealed that, under specific as-
sumptions on the fitness function and the mutation rates, asymptotic estimates for the leading
eigenvalue of the mutation-reproduction matrix may be obtained through a low-dimensional
variational principle in the limit N !1 (where N is the number of types). In order to gen-
eralize these results, we consider here a large family of reversibleN�N matrices and iden-
tify conditions under which the high-dimensional Rayleigh-Ritz variational problem may be
reduced to a low-dimensional one that yields the leading eigenvalue up to an error term of or-
der 1=N . For a large class of mutation-selection models, this implies estimates for the mean
fitness, as well as a concentration result for the ancestral distribution of types.

1. Introduction

Many systems of population biology, or reaction kinetics, may be cast into a form
where individuals (or particles) of different types reproduce and change type inde-
pendently of each other in continuous time. If the types come from a finite set S and
the population is so large that random fluctuations may be neglected, one is led to
a linear system of differential equations of the form

_y = yH (1)

with initial condition y(0). Here, y = (y

i

)

i2S

2 R

jSj

>0

holds the abundance of the
various types.H = (H

ij

)

i;j2S

is an jSj�jSj matrix, which represents a linear op-
erator on RjSj. Important examples include models of age-structured populations,
which are often referred to as matrix population models, see Caswell’s monograph
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[10]. The main application we have in mind here is in population genetics, where
types are alleles, so that Equation (1) is a haploid mutation-reproduction model;
but one may also think of a compartment model, where types are locations of a cer-
tain chemical. In line with large parts of the population genetics, and most of the
stochastics, literature, we will use the convention that y is a row vector to whichH
is applied from the right, so that H

ij

(i 6= j) is the coefficient for the change from
i to j.

We will assume throughout that the linear operatorH generates a positive semi-
group, fexp(tH) j t > 0g. Since S is finite, this is equivalent toH

ij

> 0 for i 6= j.

The flow so generated leaves RjSj
>0

invariant. We will further assume that H is ir-
reducible (i.e., ifG(H) is the directed graph with an edge from i to j if i 6= j and
H

ij

> 0, then there is a directed path from any vertex to any other vertex).
We will often use the decomposition

H = M + R (2)

into a Markov generatorM and a diagonal matrixR. More precisely, we haveM =

(M

ij

)

i;j2S

withM
ij

:= H

ij

for i 6= j,M
ii

:= �

P

j2Snfig

M

ij

(so that
P

j2S

M

ij

=

0), and R = diagfR
i

j i 2 Sg withR
i

:= H

ii

�M

ii

. Clearly, the decomposition
in (2) is unique, and M is irreducible iffH is, because G(M ) = G(H). M

ij

is the
rate at which an i-individual produces j-offspring (j 6= i), and R

i

is the net rate
at which individuals of type i reproduce themselves; this may also include death
terms and thus be negative.

Solutions of (1) cannot vanish altogether (unless y(0) = 0), since tr(H) is fi-
nite, hence det

�

exp(tH)

�

= exp(t tr(H)) > 0 and ker
�

exp(tH)

�

= f0g, for all
t > 0. Therefore, we may also consider the corresponding normalized equation for
the proportions p

i

:= y

i

=(

P

j2S

y

j

), which is sometimes more relevant. Clearly,

_p

i

=

X

j2S

p

j

M

ji

+

�

R

i

�

X

j2S

R

j

p

j

�

p

i

: (3)

In the population genetics context, this is the mutation-selection equation for a hap-
loid population, or a diploid one without dominance; for a comprehensive review
of this class of models, see [8]. It is well known, and easy to verify, that the way
back from (3) to (1) is achieved through ‘Thompson’s trick’ [36]:

y(t) := p(t) exp

�

X

j2S

R

j

Z

t

0

p

j

(� )d�

�

:

This substitution can thus be viewed as a global linearization transformation and
explains why (3) is an ‘essentially linear’ equation.

Clearly, the solution of (3) is obtained from that of (1) through normalization:

y(t) = y(0) exp(tH); p(t) =

y(t)

P

i

y

i

(t)

:

Of course, proportions of types in a population that grows without restriction
(which is biologically reasonable only over short time scales) is not the only way
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in which (3) may arise. Actually, the same equation for p results if (1) is replaced
by

_y = y

�

H � (t)

�

;

where (t) is some scalar (possibly nonlinear) function which describes the elimi-
nation of individuals by population regulation. This is obvious from the invariance
of (3) under R

i

! R

i

+ (t) if performed simultaneously for all i. The function
(t) may, for example, describe the flow out of a chemostat, or an additional death
term caused by crowding, which may depend on t through y, but acts on all types
in the same way.

Eq. (3) may be read in two ways (cf. [23]). If mutation and reproduction go on
independently of each other, the parallel (or decoupled) version is adequate. Here,
every i-individual gives birth to offspring of its own type at rateB

i

, dies at rateD
i

,
and mutates to j at rateM

ij

(j 6= i).R
i

:= B

i

�D

i

then is the net reproduction rate
or Malthusian fitness [11, Ch. 5.3], and Eq. (3) is immediate. If, however, mutation
is a side effect of reproduction (through copying errors of the replication process,
for example), the coupled version [1,20] is more relevant. When an i-individual re-
produces (which it does, as before, at rateB

i

, while it dies at rateD
i

), the offspring
is of type j with probability V

ij

(
P

j

V

ij

= 1). This leads to

_p

i

=

�

X

j2S

p

j

B

j

V

ji

�

�

�

D

i

+

X

j2S

R

j

p

j

�

p

i

; (4)

where, again, R
i

= B

i

�D

i

. But if we set M
ij

:= B

i

(V

ij

� Æ

ij

), we arrive again
at Eq. (3). In both cases,

P

j

R

j

p

j

is the mean fitness of the population. Obviously,
a mixture of both the parallel and the coupled mutation mechanisms can be tackled
in the same way, but we omit further details.

The model (4) also arises in the infinite population limit of the well-known
Moran model with selection and mutation, see [15, Ch. 3] or [12, p. 126]. This is a
stochastic model where, in a population of m individuals, every individual of type
i reproduces at rate B

i

, and the offspring, which is of type j with probability V
ij

,
replaces a randomly chosen individual in the population (possibly its own parent).
To describe the entire population, let Z

i

(t) be the random variable that gives the
number of i-individuals at time t, and Z(t) =

�

Z

i

(t)

�

i2S

. Hence, ifZ(t) = z, and
j 6= k, we can have transitions from z to z + e

j

� e

k

, where e
j

denotes the unit
vector corresponding to j. Such a transition occurs at rate

P

i

B

i

V

ij

z

i

z

k

=m. Let us
look at the influence of increasingm, whence we write Z(m)

(t) to indicate depen-
dence on system size. As m!1, the sequence of random processes Z(m)

(t)=m

converges almost surely, and uniformly for every finite interval [0; t℄, to the solu-
tion of the differential equation (4) withD

i

� 0, and initial conditionZ(m)

(0)=m

(resp. its limit as m!1), compare [14, Thm. 11.2.1].
The linear equation (1) has a more direct stochastic interpretation in terms of

a continuous-time multitype branching process. After an exponential waiting time
with expectation �

i

, an individual of type i produces a random offspring with a fi-
nite expectation of b

ij

children of type j (we will not specify the distributionexplic-
itly since we will not fully develop the stochastic picture here). The matrixH with
H

ij

= b

ij

=�

i

then is the generator of the first-moment matrix. That is, if Z
j

(t) is
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again the (random) number of individuals of type j at time t, and Ei the associated
expectation in a population started by a single i individual at time 0, then

E

i

(Z

j

(t)) =

�

exp(tH)

�

ij

: (5)

Further, with the identification y
i

(t) = E

�

Z

i

(t)

�

, Equation (1) then simply is the
forward equation for the expectations. (See [2] or [27] for the general context of
multitype branching processes, and [21] for the application to mutation-selection
models.)

Important first questions concern the asymptotic properties of the systems dis-
cussed. A key to these properties is the leading eigenvalue, �

max

, ofH (i.e., the real
eigenvalue exceeding the real parts of all other eigenvalues), for various reasons.
If, on short time scales, unrestricted growth according to (1) is relevant, then �

max

is the asymptotic growth rate of the population. The stationary distribution of types
in (3) is given by the left eigenvector ofH corresponding to �

max

. The knowledge
of �

max

is a prerequisite for the calculation of this eigenvector. In the population
genetics context, the stationary state is often referred to as mutation-selection bal-
ance, with �

max

as the mean fitness. Finally, and perhaps most importantly, the de-
pendence of �

max

on certain model parameters is of great interest. For example,
a lot of research has been directed towards the question of how the mean fitness
changes when the mutation rate increases (i.e., whenM is varied by some nonneg-
ative scalar factor), and interesting effects have been observed, for example error
thresholds (for reviews, see [8, Ch. III] and [13]).

In general, exact expressions for eigenvalues are hard to obtain if jSj is large
but fixed. In recent work on mutation-selection models, however, scalar or low-
dimensional maximum principles for the leading eigenvalue have been identified
for certain examples [21,17] in a suitable continuous limit as jSj % 1. It is the
purpose of this paper to generalize these results to a large class of operators. We
will do so under the general assumption that the Markov generatorM is reversible,
which covers a large class of mutation models; in particular, reversibility is a stan-
dard assumption in molecular population genetics, cf. [34] or [16, Ch. 13].

The paper is organized as follows. In Section 2, we will apply the Rayleigh-
Ritz maximum principle to our class of matrices. This leads to a high-dimensional
problem, which is hard to solve in practice. An example of how the problem may be
reduced to a scalar one is given in Section 3. The main results are given in Section
4. Here, we identify fairly general conditions under which the high-dimensional
problem may be reduced to a low-dimensional variational problem that yields the
leading eigenvalue up to an error term of order 1=N , in the limit N = jSj ! 1.
Sections 5 and 6 are devoted to the lumping procedure. They show that a large
class of models on a type space S arises, in a natural way, from models defined
on a ‘larger’ space S, by combining several types inS into a single one in S. The
general framework is set out in Section 5, and in Section 6, we apply it to the im-
portant case where S is the space of all sequences over a given alphabet, and of
fixed length. Section 7 makes the connection back to the maximum principle and
shows how the lumping procedure may lead to ‘effective’ models (on S) to which
our asymptotic results may then be applied. The Hopfield fitness function, along
with sequence space mutation, emerges as an example.



Asymptotic maximum principle 5

2. The general maximum principle for reversible generators

Let us first fix our assumptions and notation. Since we assume M to be an irre-
ducible Markov generator, Perron-Frobenius theory, cf. [26, Appendix], tells us
that it has a leading eigenvalue 0 which exceeds the real parts of all other eigen-
values, and an associated strictly positive left eigenvector �. It will be normalized
s.t.
P

i

�

i

= 1; then, � is the stationary distribution of the Markov semigroup gen-
erated by M .

We will assume throughout that M is reversible, i.e.,

�

i

M

ij

= �

j

M

ji

(6)

for all i and j, which also entails �
i

H

ij

= �

j

H

ji

since R is diagonal. Likewise,
due to irreducibility, the leading eigenvalue, �

max

, of H is simple; we will meet
the corresponding eigenvectors in due course.

Let us note in passing that, due to reversibility, the equilibrium distribution �
of M is available explicitly. To see this, let (k

1

; k

2

; : : : ; k

jSj

) be the vertices of a
Hamiltonian path of length jSj � 1 in our graph G(M ), i.e., k

i

6= k

j

for i 6= j;
such a path exists due to irreducibility. Set ~�

k

1

= 1 and, for 2 6 i 6 jSj,

~�

k

i

=

M

k

i�1

;k

i

M

k

i

;k

i�1

~�

k

i�1

=

i

Y

j=2

M

k

j�1

;k

j

M

k

j

;k

j�1

> 0 :

Then, as an immediate consequence of (6), �
i

= ~�

i

=(

P

j2S

~�

j

) is the stationary
probability distribution of the Markov generatorM ; in particular, the choice of the
path is arbitrary, which reflects the path independence of reversible Markov chains.

For i 6= j, we now define

F

ij

:=

p

�

i

M

ij

1

p

�

j

= F

ji

; (7)

where the symmetry follows from the reversibility of M . Clearly, F
ij

> 0 and
F

ij

= (F

ij

F

ji

)

1=2

= (M

ij

M

ji

)

1=2. As a consequence, the matrix

~

H := �

1=2

H�

�1=2 (8)

with � := diagf�
i

j i 2 Sg has off-diagonal entries F
ij

, is symmetric and has
the same spectrum as H, with correspondingly transformed eigenvectors. We now
decompose ~

H in the same way as we did with H in (2), namely into a Markov
generator F plus a diagonal matrix E. To this end, let F = (F

ij

)

i;j2S

with F
ij

as in (7) for i 6= j, and complete this by F
ii

:= �

P

j2Snfig

F

ij

. With E
i

:=

R

i

+M

ii

� F

ii

, one now has ~

H

ij

= F

ij

+E

i

Æ

ij

for all i; j 2 S, i.e.,

~

H = F +E (9)

with F a Markov generator and E = diagfE
i

j i 2 Sg.
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This now allows us to formulate a suitable variant of the Rayleigh-Ritz (or Courant-
Fisher) maximum principle for the leading eigenvalue of ~

H, compare [32, Thm.
19.4]. Clearly,

�

max

= sup

v:

P

`2S

v

2

`

=1

X

i;j2S

v

i

~

H

ij

v

j

= sup

v:

P

`2S

v

2

`

=1

�

X

i;j2S

v

i

F

ij

v

j

+

X

k2S

E

k

v

2

k

�

; (10)

where we have used the decomposition (9) in the second step. Note that the supre-
mum is, indeed, assumed, since the space of probability measures on S is com-
pact. The maximizer, i.e., the normalized principal eigenvector of ~

H, is unique and
strictly positive (since the same holds for the corresponding eigenvector ofH), so
that the above may also be read as an L1 variant through the substitution �

i

:= v

2

i

.
Note that, since F is a Markov generator, the quadratic form

P

i;j2S

v

i

F

ij

v

j

is
negative semidefinite with maximum 0, which is assumed for the stationary distri-
bution of F (since F is symmetric and irreducible, this is the equidistribution, and
unique). We thus have a simple upper bound on �

max

:

�

max

6 sup

v:

P

`2S

v

2

`

=1

X

k2S

E

k

v

2

k

= max

k2S

E

k

; (11)

while we can obtain a lower bound for any v > 0 with
P

i

v

2

i

= 1 via

X

i;j2S

v

i

F

ij

v

j

+

X

k2S

E

k

v

2

k

6 �

max

: (12)

Even though each step of the above derivation is elementary, it is worthwhile
to summarize the findings as follows.

Proposition 1. Let S be a finite set, and letH be an jSj�jSj-matrix with decompo-
sitionH = M +R into an irreducible and reversible Markov generator M and a
diagonal matrixR. If � is the stationary distribution of M , H can be symmetrized
to ~

H = �

1=2

H�

�1=2 with � = diagf�

i

j i 2 Sg. The matrices H and ~

H

are isospectral, and their leading eigenvalue �
max

is given by the maximum prin-
ciple (10). Furthermore, simple upper and lower bounds for �

max

are provided by
Eqns. (11) and (12). ut

It is our aim to identify conditions under which the inequality (11) becomes an
equality, at least asymptotically as jSj ! 1.

As a first step, consider the maximizer of (10), i.e., the principal eigenvector w
of ~

H, normalized via
P

i2S

w

2

i

= 1. Since ~

H is symmetric, we havew ~

H = �

max

w

and, simultaneously, ~

Hw

T

= �

max

w

T . Hence,

z

T

:= 

z

�

�1=2

w

T and h := 

h

w�

1=2 (13)

are the principal right and left eigenvectors ofH = �

�1=2

~

H�

1=2. We will adjust
the constants 

h

and 
z

s.t.
P

i

h

i

=

P

i

h

i

z

i

= 1; clearly, this implies 
z

� 

h

= 1.
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The vector h gives the stationary distribution of types in Equation (3). Further,
it is well-known that, for irreducibleH and t!1, the matrix exp (tH � �

max

1)

becomes a projector onto h, with matrix elements z
i

h

j

(compare [26, Appendix]).
Therefore,

lim

t!1

P

j2S

�

exp (tH)

�

ij

P

k;`2S

h

k

�

exp (tH)

�

k`

=

P

j2S

z

i

h

j

P

`2S

h

`

= z

i

: (14)

With (5) in mind, z
i

may therefore be understood as the asymptotic offspring ex-
pectation of an i individual, relative to the mean offspring expectation of an equi-
librium population. If R = C1 for some constant C, we have z

i

� 1, in line with
the fact that H � C1 is then a Markov generator.

From (13) along with the normalization of h and z, the relations

h

i

=

�

i

z

i

P

j2S

�

j

z

j

and w

2

i

= h

i

z

i

(15)

are obvious. In particular, with

a

i

:= w

2

i

= h

i

z

i

> 0 ; (16)

we obtain the corresponding L1-maximizer of (10).
To arrive at another interpretation of a, consider the Markov generator Q with

elements

Q

ij

= z

�1

i

(H

ij

� �

max

Æ

ij

)z

j

: (17)

It is easily confirmed that Q is indeed a Markov generator (i.e., Q
ij

> 0 for i 6= j,
and

P

j

Q

ij

= 0). Using (15) and reversibility, one observes that Q may also be
rewritten as

Q

ij

= h

�1

i

(H

ji

� �

max

Æ

ij

)h

j

: (18)

In the form (18), Q is the generator of the backward process on the station-
ary distribution as described in [25, Corollary 1] for general multitype branching
processes, and used in [21] in the context of mutation-selection models. Loosely
speaking, Q describes the Markov chain which results from picking individuals
randomly from the stationary distribution h and following their lines of descent
backward in time. Eq. (17) is the corresponding forward version as used in [24] and
[19]. It is immediately verified thatQ has principal left eigenvector (i.e., stationary
distribution) a. This is known as the ancestral distribution of types; its properties
are analyzed in [19]. Let us summarize as follows.

Proposition 2. Let the assumptionsbe as in Proposition1. Then, the principal eigen-
vector w of ~

H gives the principal left and right eigenvectors of H and their mu-
tual relations through Eqns. (13) and (15). The L1-maximizer a = (a

i

)

i2S

of (10)
admits the interpretation of an ancestral distribution as the stationary state of the
backward Markov generator Q of (17) and (18). ut
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3. A scalar maximum principle: An example

The maximum principle (10) is not very useful in practice if jSj is large but fixed,
since maximization is then over a large space. In [21], this high-dimensional max-
imization could be reduced to a scalar one for special choices ofM andR. We will
re-derive this result here in a simplified way, which will also lead the way towards
the more general methods and results we are aiming at. Let S = f0; 1; : : : ; Ngwith
the following mutation scheme:

0

U

+

0

��!

 ��

U

�

1

1

U

+

1

��!

 ��

U

�

2

2 � � �

U

+

k

���!

 ���

U

�

k+1

� � � N�1

U

+

N�1

���!

 ���

U

�

N

N

Suppressing the (relevant!) dependence onN in the notation, we then have

M

i;i+1

= U

+

i

; M

i;i�1

= U

�

i

(19)

for i 2 S, where we set U+

N

= U

�

0

= 0. This is a variant of the so-called single-
step mutation model of population genetics [8, Ch. III.4]. It emerges if sequences
of sites (nuceotide sites or loci) are considered, and the ‘type’ is identified with the
number of sites at which the sequence differs from a given reference sequence or
wildtype; see [33] for a recent application. If fitness is a function of this number
only, and if mutations occur independently of each other in continuous time, we
are in the setting of the single-step mutation model.

Hence, for all i 2 S, we have

F

i;i+1

= (M

i;i+1

M

i+1;i

)

1=2

= (U

+

i

U

�

i+1

)

1=2

= F

i+1;i

(20)

with the obvious meaning for i = 0 and i = N ; also, F
ij

:= 0 whenever either
i or j is not in S, or if ji � jj > 1. In order to evaluate the lower bound in (12),
let N be large, 1 6 L � N , and ` 2 S. We will use the simple test function
� := (�

0

; �

1

; : : : ; �

N

) defined through

�

i

= 

`

�

(

0; i =2

�

` + [�L;L℄

�

\ S

1; i 2

�

` + [�L;L℄

�

\ S

with [�L;L℄ := f�L;�L + 1; : : : ; L� 1; Lg, and the constant 
`

chosen so that
P

i

�

i

= 1. That is, � is a normalized step function around `, which does not extend
beyond 0 or N . If ` + [�L;L℄ � S, one always has 

`

= 1=(2L + 1); a short
calculation shows that, in any case,

1

2L+ 1

6 

`

6

1

L + 1

;

due to L� N . With �
i

= v

2

i

, the quadratic form in (10) and (12) reduces to

X

i;j2S

v

i

F

ij

v

j

= 

`

X

i;j2`+[�L;L℄

F

ij

= �

`

(F

`�L;`�L�1

+ F

`+L;`+L+1

) ;
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due to the tridiagonal nature of the Markov generator F . Since 1

2

(F

`�L;`�L�1

+

F

`+L;`+L+1

) 6 max

i

F

i;i+1

= max

i;j2S

F

ij

=: F

max

, one has
�

�

�

X

i;j2S

v

i

F

ij

v

j

�

�

6

2F

max

L + 1

: (21)

On the other hand, the second term in (10) resp. (12) (to be called the ‘diagonal
part’ in what follows) becomes

X

i2S

E

i

v

2

i

= 

`

`+L

X

i=`�L

�

R

i

� U

+

i

� U

�

i

+

q

U

+

i

U

�

i+1

+

q

U

�

i

U

+

i�1

�

; (22)

where U�

i

:= 0 is implied whenever i =2 S.
We now assume that

U

�

i

= u

�

(x

i

) +O(1=N ) and R

i

= r(x

i

) +O(1=N ) (23)

with continuous functionsu+, u�, and r on [0,1], and the new ‘type variable’ x
i

=

i=N ; it is further implied that the constant in theO(1=N ) bound is uniform for all
i. (Eq. (23) differs from the scaling in [21] by a global factor of N , which means
nothing but a change of the time scale.)

Define g(x) := u

+

(x) + u

�

(x) � 2

p

u

+

(x)u

�

(x), let x� be a position at
which r(x) � g(x) assumes its supremum, and choose ` := bNx

�

. With an ap-
propriate scaling of L (such as L �

p

N , to be specific), the right-hand side of
(21) isO(1=

p

N ). In (22), the sum has O(
p

N ) terms, which is balanced by 
`

=

O(1=

p

N ); together with (23), this turns the right-hand side of (22) into r(x�) �
g(x

�

) + O(1=N ). At the same time, the upper bound in (11) also behaves like
r(x

�

) � g(x

�

) + O(1=N ). Taking everything together, we obtain the asymptotic
maximum principle forN !1:

�

max

= sup

x2[0;1℄

�

r(x)� g(x)

�

(24)

up to O(1=
p

N ).
Finally, recall from Section 2 that, for finiteN , the maximizer of (10) is unique

and given by the ancestral distribution a = (h

i

z

i

)

i2S

. However, in the limit as
N !1, uniqueness may be lost, which is also reflected by the fact that the supre-
mum in (24) may be assumed at more than one point. In these degenerate situations,
error thresholds may occur [21].

Remark 1. The maximum principle derived in [21] also holds for functions r and
u

� with a finite number of jumps. This can be dealt with in the current framework
with slightly more effort, but we avoid this here to keep the example as transparent
as possible.

Remark 2. With a more careful choice for the scaling of L, one gets the quadratic
form (defined by the matrixF ) down toO(1=N1�"

) for arbitrary " > 0, butO(1=N )

is only obtained with the help of better (smooth) test functions. This will now be
done.
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4. Asymptotics for the leading eigenvalue

The maximum principle allows for an asymptotic estimation of the leading eigen-
value when the Markov generatorF can be considered as ‘small’ in a suitable sense,
in comparison to the derived effective ‘diagonal’ part. Before stating precise con-
ditions and results, let us briefly discuss the heuristics behind this. Due to the sym-
metry of F , we can rewrite Eq. (10) as

�

max

= sup

v:

P

`2S

v

2

`

=1

�

�

1

2

X

i;j2S

F

ij

(v

i

� v

j

)

2

+

X

k2S

E

k

v

2

k

�

: (25)

Thus, it is obvious that the F -term favours constant v while the diagonal E-part
favours v that are concentrated on the points k where E

k

is maximal. Clearly, the
outcome of this competition depends on some concentration and smoothness prop-
erties of the matrices involved.

For simplicity, let us now assume that our set S consists of integers or, more
generally, d-tuples of integers. So, S �Zd, with jSj <1. We will now look more
closely into the situation where jSj % 1. Consider a family of sets

S = S(N ); S �Z

d

; so that jSj � Nd as N !1; (26)

where we suppress once again the dependence of S on N . A reasonable setup is
then obtained if 1

N

� S � D, where D is a compact domain inRd, 1

N

� S becomes
dense in D for N !1, and there exist functionsE and f

k

from C

2

b

(D;R)with

E

i

= E

�

i

N

�

+O

�

1

N

�

(27)

and

F

ij

= f

k

�

i

N

�

+ O

�

1

N

�

; (28)

where k = j � i, and the constant in theO(1=N ) bound is uniform for all i and j.
More generally, one can replaceO(1=N ) in (27) and (28) byO(1=�(N )) for some
function �(N ) that grows withN , if that better suits the individual situation.

Our main result will be the following theorem. ForS �Zd, we will use through-
out the slightly abusive notation S � j := fi� j j i 2 Sg.

Theorem 1. Assume thatE
i

and F
ij

are as in Eqns. (27) and (28) . Assume further
that theC2

b

(D;R) functionE assumes its absolute maximum in int(D), and that f
satisfies

X

k2S�i

f

k

�

i

N

�

jk

`

jk

2

m

6 C (29)

for some constant C, uniformly for all i 2 S, and 1 6 `;m 6 d. Then, there exist
constants 0 6 C

0

; C

00

<1 such that

E(x

�

)�

C

0

N

6 �

max

6 E(x

�

) +

C

00

N

; (30)

where x� is a point where E(x) assumes its maximum.
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Remark 3. It will become clear when we proceed that the condition on the deriva-
tives ofE(x) and the f

k

(x) may be relaxed; it is indeed sufficient that these func-
tions be C2

b

locally, in a neighbourhood of x�.

Note that the upper bound is clear in view of Eqns. (27) and (11) (recall that
the quadratic form defined by F is negative semidefinite); it can be made sharper
if the order of the approximation in (27) and (28) is improved. It remains to prove
the lower bound (which cannot be improved by sharpening the O(1=N ) in (27)
and (28)). We will do so by evaluating the quadratic form in (25) for a sequence
of test functions of Gaussian type centred around x� in the interior of D (and ap-
proaching a Dirac measure located at x� with increasing N ). Specifically, we will
use throughout

v

i

:= e

��Nji=N�x

�

j

2

with  = (N ) s.t.
X

i2S

v

2

i

= 1; (31)

where � > 0 is a positive real number independent of N .
We will first consider the diagonal part and show

Proposition 3. Let E
i

be as in (27) and x� be a point in the interior of D where
E(x) assumes its maximum. Let the v

i

be as in Eq. (31). Then,

X

i2S

E

i

v

2

i

= E(x

�

) + O

�

1

N

�

:

The upper bound in the proposition being immediate, we only need to prove the
lower bound. We will use the following fact.

Lemma 1. Let g : Rd

�! R

>0

be a non-negative, continuous, integrable function
with g(x) 6 C=(1+ jxj)

d+" for all x, and (fixed) positive constantsC and ". Then,
for any x� 2 Rd,

lim

n!1

1

n

d

X

i2Z

d

g

�

i

N

� nx

�

�

=

Z

R

d

g(x) dx : (32)

Proof. Note first that the sum in (32) exists for arbitrary, but fixed n due to the

assumed decay condition for g. Let b
n

:= �

d

k=1

(�1=2n; 1=2n℄. Then, one has
R

d

=

_

S

i2Z

d

(i=n+ b

n

), and, for all x, there is a (unique) element  ofZd=n with
x 2  + b

n

; this will be called 
n

(x). We now define

g

+

n

(x) := sup

z2(

n

(x)+b

n

)

g(z); g

�

n

(x) := inf

z2(

n

(x)+b

n

)

g(z) : (33)

Since integration over Rd is invariant under a shift of argument, and g�
n

are step
functions, we have

Z

R

d

g

�

n

(x) dx =

Z

R

d

g

�

n

(x� nx

�

) dx =

1

n

d

X

i2Z

d

g

�

n

(i=n � nx

�

)
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6

1

n

d

X

i2Z

d

g(i=n� nx

�

) 6

1

n

d

X

i2Z

d

g

+

n

(i=n� nx

�

) (34)

=

Z

R

d

g

+

n

(x� nx

�

) dx =

Z

R

d

g

+

n

(x) dx :

Both g+
n

and g�
n

converge to g pointwise (since g is continuous). Further, g�
n

(x) are
both bounded from above due to the properties of the assumed majorizing function,
and hence

R

R

d

g

�

n

(x) dx and
R

R

d

g

+

n

(x) dx both converge to
R

R

d

g(x) dx as n !
1 by the dominated convergence theorem. But then, the same must be true of the
sum in (34), which proves the assertion. ut

We will use the following immediate corollary.

Corollary 1. For any non-negative integer k, and any � > 0

lim

N!1

N

(k�d)=2

X

i2Z

d

�

�

�

i

N

� x

�

�

�

�

k

e

��Nji=N�x

�

j

2

=

Z

R

d

jxj

k

e

��jxj

2

dx : (35)

Proof. Use Lemma 1 with n =

p

N and g(x) = jxjke��jxj
2

. ut

The following is a simple consequence of the preceding corollary.

Lemma 2. For any A �Zd, Æ > 0 and k 2 N,

N

(k�d)=2

X

i2A:

ji=N�x

�

j>Æ

�

�

�

i

N

� x

�

�

�

�

k

e

�2�Nji=N�x

�

j

2

= O

�

e

��NÆ

2

�

: (36)

Proof. Just note that

N

(k�d)=2

X

i2A:

ji=N�x

�

j>Æ

�

�

�

i

N

� x

�

�

�

�

k

e

�2�Nji=N�x

�

j

2

6 e

��NÆ

2

N

(k�d)=2

X

i2Z

d

�

�

�

i

N

� x

�

�

�

�

k

e

��Nji=N�x

�

j

2

(37)

and apply Corollary 1 to the last expression to get the assertion. ut

This yields a variant of Corollary 1:

Corollary 2. Corollary 1 holds true with Zd replaced by S(N ) of (26).

Proof. Since x� 2 int(D), we may choose a Æ > 0 so thatZdnS(N ) � fi 2Z

d

:

ji=N �x

�

j > Æg. Then, the difference in the sum in (35) isO(e��NÆ

2

), according
to Lemma 2, with A = S(N ). ut

We are now ready to prove Proposition 3.
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Proof. Since we may write

�

�

�

i

N

� x

�

�

�

�

k

v

2

i

=

1

N

k=2

N

(k�d)=2

ji=N � x

�

j

k

e

�2�Nji=N�x

�

j

2

N

d=2

P

j2S

e

�2�Nji=N�x

�

j

2

;

Lemma 2 and Corollary 2 entail that, for k > 0,

X

i2S(N):

ji=N�x

�

j>Æ

�

�

�

i

N

� x

�

�

�

�

k

v

2

i

= O(e

��NÆ

2

) (38)

and
X

i2S(N):

ji=N�x

�

j<Æ

�

�

�

i

N

� x

�

�

�

�

k

v

2

i

= O

�

1

N

k=2

�

: (39)

So far, we have only used that x� is in int(D). But x� is also a point where E(x)

assumes its maximum, and E(x) is twice differentiable in a neighbourhood of x�.
Hence, there exist Æ > 0 and 0 6 C <1, such that for all jx� x�j < Æ, E(x) >

E(x

�

)� Cjx� x

�

j

2. Therefore,

X

i2S

v

2

i

E

i

= O

�

1

N

�

+

X

i2S:

ji=N�x

�

j<Æ

E

�

i

N

�

v

2

i

+

X

i2S:

ji=N�x

�

j>Æ

E

�

i

N

�

v

2

i

> E(x

�

)

�

1 +O(e

��NÆ

2

)

�

�C

X

i2S:

ji=N�x

�

j<Æ

�

�

�

i

N

� x

�

�

�

�

2

v

2

i

+O

�

1

N

�

+ inf

x2D

�

E(x)

�

X

i2S:

ji=N�x

�

j>Æ

v

2

i

= E(x

�

) + O

�

1

N

�

;

where we have used (27) along with normalization in the first, (38) in the second,
and (38) and (39) in the last step. This proves the assertion of Proposition 3. ut

After dealing with the diagonal part, we are now ready to embark on the quadratic
form.

Proposition 4. Let F
ij

be as in (28), and assume that f satisfies condition (29) of
Theorem 1. Then,

X

i;j2S

v

i

F

ij

v

j

= O

�

1

N

�

:

Proof. Evaluating the difference between ji=N�x�j2 = hi=N�x

�

; i=N�x

�

i and
jj=N�x

�

j

2

= hj=N�x

�

; j=N�x

�

i, we first note that jj=N�x�j2�ji=N�x�j2 =

h(i + j)=N � 2x

�

; (j � i)=N i (here, h: ; :i denotes the scalar product). In view of
v

i

= e

��Nhi=N�x

�

;i=N�x

�

i, and with j = i + k,

v

i

> v

i+k

() �(i; k) :=

D

2i+ k

N

� 2x

�

;

k

N

E

> 0
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(note that �(i; 0) = 0). Using F
ij

= F

ji

(see (7)), (v
i

� v

j

)

2

= (v

j

� v

i

)

2, and
F

i;i+k

= f

k

(i=N ) + O(1=N ) (see (28)), we can rewrite the quadratic form as

X

i;j2S

v

i

F

ij

v

j

= �

1

2

X

i2S

X

k2S�i

F

i;i+k

(v

i

� v

i+k

)

2

= �

X

i2S

X

k2S�i

�(i;k)>0

F

i;i+k

(v

i

� v

i+k

)

2

= �

X

i2S

X

k2S�i:

�(i;k)>0

�

f

k

�

i

N

�

+ O

�

1

N

��

(v

i

� v

i+k

)

2

:

We have thus achieved that the summation includes only terms where v
i

> v

i+k

,
which entails that

v

i

� v

i+k

= e

��Nji=N�x

�

j

2

(1� e

��N�(i;k)

) 6 �Ne

��Nji=N�x

�

j

2

�(i; k) ;

since 1 � e

�x

6 min(x; 1) 6 x for x > 0 (of which we only use the latter in-
equality). Together with the fact that the quadratic form is negative semidefinite,
this gives

0 > �

1

2

X

i2S

X

k2S�i

F

i;i+k

(v

i

� v

i+k

)

2

> ��

2

N

2

X

i2S

v

2

i

X

k2S�i:

�(i;k)>0

�

f

k

�

i

N

�

+O

�

1

N

��

�

�(i; k)

�

2

> ��

2

N

2

X

i2S

v

2

i

X

k2S�i

�

f

k

�

i

N

�

+O

�

1

N

��

�

�(i; k)

�

2

: (40)

In the last step, the constraint on the sum could be removed since we added to the
sum nonnegative terms only: f

k

(i=N ) > 0 for k 6= 0, and
�

�(i; k)

�

2

> 0 with
equality for k = 0.

We now note that (29) entails that, for 1 6 `;m 6 d,

X

k2S�i

f

k

�

i

N

�

k

`

k

m

;

X

k2S�i

f

k

�

i

N

�

k

`

k

2

m

; and
X

k2S�i

f

k

�

i

N

�

k

2

`

k

2

m

=N

(41)
are all bounded from above by a positive constantC (the latter case relies onS=N �
D with compact D). Writing

�

�(i; k)

�

2

=

D

2

�

i

N

� x

�

�

+

k

N

;

k

N

E

2

=

1

N

2

d

X

`;m=1

k

`

k

m

h

4

�

i

`

N

� x

�

`

��

i

m

N

� x

�

m

�

+ 4

�

i

`

N

� x

�

`

�

k

m

N

+

k

m

k

`

N

2

i

allows us to bound the various parts of the sum in (40) as follows:
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� 4

X

i2S

v

2

i

X

k2S�i

f

k

�

i

N

�

d

X

`;m=1

k

`

k

m

�

i

`

N

� x

�

`

��

i

m

N

� x

�

m

�

> �4Cd

d

X

m=1

X

i2S

�

i

m

N

� x

�

m

�

2

v

2

i

= O

�

1

N

�

; (42)

where we used the Cauchy-Schwarz inequality for

d

X

`;m=1

k

`

k

m

�

i

`

N

� x

�

`

��

i

m

N

� x

�

m

�

6

d

X

`=1

k

2

`

d

X

m=1

�

i

m

N

� x

�

m

�

2

;

(41) in the first, and (38) and (39) in the last step.
Again, with (41), (38), and (39), we obtain

� 4

X

i2S

v

2

i

d

X

`;m=1

X

k2S�i

f

k

�

i

N

�

k

`

k

2

m

N

�

i

`

N

� x

�

`

�

> �4

Cd

N

X

i2S

v

2

i

d

X

l=1

�

�

�

i

`

N

� x

�

`

�

�

�

= O

�

1

N

3=2

�

; (43)

where we further used that
P

d

`=1

ji

`

=N � x

�

`

j 6 ji=N � x

�

j for some positive
constant . Finally, (41) also gives that

X

i2S

v

2

i

d

X

`;m=1

X

k2S�i

f

k

�

i

N

�

k

2

`

k

2

m

N

2

= O

�

1

N

�

: (44)

Combining (42), (43), and (44), we arrive at the assertion. ut

Remark 4. Eq. (44) is the reason that the lower bound in (30) cannot be improved
by better approximations in (27) and (28).

Remark 5. We have, so far, assumed that x� is in the interior of D. If x� is on the
boundary of D, a similar approach may be taken with a one-sided, exponentially
decaying test function. The error in the approximation will, however, be larger than
in the case tackled here.

In both cases, much finer results can be obtained using more advanced methods
of perturbation theory [28], which, however, require much more work.

So far, we have used the Rayleigh-Ritz variational principle (10) to obtain re-
sults on the leading eigenvalue of H, but said nothing about the maximizer (note
that this need not coincide with the test function v). Recall from Section 2 that, for
finite N , the maximizer is unique and – in its L1 version – given by the ancestral
distributiona = (h

i

z

i

)

i2S

. Actually, from the bounds above, we can also conclude
that a is concentrated in a neighbourhood of x�, where the size of the neighbour-
hood depends on the behaviour of E near its maximum. In the generic case of a
quadratic maximum, a is concentrated in a region with a width of order 1=

p

N .
More precisely, we have:
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Theorem 2. Let E
i

and F
ij

satisfy the hypotheses of Theorem 1. Assume that E
assumes its maximum at a unique point x� 2 int(D), and that the Hessian of E at
x

� is positive definite. Then, for every 0 < � 6 1, there is a � > 0, independent of
N , so that, for N large enough:

X

i2S:

ji=N�x

�

j>

p

�=�N

a

i

6 � ;

where a is the ancestral distribution (of (16) and Prop. 2).

Proof. Recall first that the (L2) maximizer of (10) is given by w = (

p

a

i

)

i2S

(cf.
(16)). Hence, by Theorem 1, the negative semidefiniteness of F , and (27), we have

E(x

�

)�

C

0

N

6 �

max

=

X

i;j2S

w

i

F

ij

w

j

+

X

i2S

E

i

w

2

i

6

X

i2S

E

i

w

2

i

6 max

i2S

E

i

= E(x

�

) +O

�

1

N

�

:

(45)

Now, considerE(x) in a neighbourhood of x�. Since the Hessian at x� is positive
definite, we haveE(x) 6 E(x

�

)�Cjx�x

�

j

2 for someC > 0 in a neighbourhood
of x�. For " small enough and Æ(") :=

p

"=C, therefore,

E(x) 6

(

E(x

�

); jx� x

�

j < Æ(")

E(x

�

)� "; jx� x

�

j > Æ("):

Together with (27) and (45), this implies

E(x

�

) +O

�

1

N

�

=

X

i2S

E

i

w

2

i

6 E(x

�

)� "

X

i2S:

ji=N�x

�

j>Æ(")

w

2

i

+O

�

1

N

�

6 E(x

�

) +O

�

1

N

�

:

Hence, for some positive constant , 0 6 "

P

i:ji=N�x

�

j>Æ(")

w

2

i

6 =N . Choos-
ing " = =�N gives the assertion. ut

Remark 6. For notational simplicity, we have assumed above thatE(x) assumes its
(absolute) maximum at a unique point x�, which is the generic case. It is obvious
from the proof, however, that an analogous result holds if the maximum is assumed
at a finite number of points (each with a positive definite Hessian). Then, the ances-
tral distribution is concentrated on the union of the corresponding neighbourhoods
of these points (or a subset thereof), again with widths of order 1=

p

N .

Let us return to the case whereE(x) assumes its (absolute) maximum at a unique
point x�. We have seen that the ancestral distribution concentrates around x� for
N ! 1, in the sense that any given fixed fraction � (or even more) of the distri-
bution’s mass is contained in a region whose width decreases with 1=

p

N . Since
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this is true for arbitrary �, it is clear that the ancestral distribution must approach a
point measure located at x�. As a consequence, the mean ancestral type,

P

i

x

i

a

i

,
converges to x�, which adds some interpretation to the scalar maximum principle
in Theorem 1; for further details, see [21].

5. Lumping

So far, we have not specified the type space S. In the example of Section 3, the types
were defined in terms of some intermediate genetic level that could be derived from
a more detailed picture. In this Section, we will show that a large class of models on
a type space S can be derived, in a natural way, from models defined on a ‘larger’
spaceS (to be called genotype space) if the branching and mutation rates fulfill cer-
tain symmetry or compatibility conditions. The idea rests on the common assump-
tion that fitness depends on the genotype through an intermediate level of ‘effec-
tive’ parameters (which may, for example, be ‘phenotypes’, or ‘genetic values’ in
quantitativegenetics), and the mapping from the genotype to this intermediate level
is multiple-to-one. One will therefore try and combine several of the genotypes into
a single one; if this is also compatible with the mutation scheme, a reduction of the
number of dimensions is possible. In the theory of Markov chains, this approach is
known as lumping [29, Ch. VI]. We will proceed in two steps: First, the lumping
procedure will be described in an abstract setting, with arbitrary genotype and type
spaces S and S, respectively. In a second step, we will specialize to the concrete
sequence (or multi-locus) picture.

For the first step, let S be a possibly large, but finite set. In analogy with (1),
consider the dynamics

_� = �(M +R) (46)

on RjSj, withM a Markov generator and R = diagfR
�

j � 2 Sg. Consider a
mapping

' : S �! S = im(') (47)

so that S may be understood as the disjoint union of fibres �
m

:

S =

_

[

m2S

�

m

; with �

m

:= f� 2 S j '(�) = mg = '

�1

(m) :

We will now give conditions under which the dynamics (46) may be reduced to a
dynamics on S. The following result is a variant of a theorem by Burke and Rosen-
blatt [9], see also [29, Chapter VI].

Theorem 3. Let S and S be finite, let ' be the mapping of (47), and assume that
there are matrices M = (M

nm

)

n;m2S

and R = diagfR

i

j i 2 Sg with

R

�

= R

'(�)

for all � 2 S; (48)
X

�2�

m

M

�;�

= M

'(�);m

for all � 2 S; m 2 S ; (49)
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whereM is the Markov generator of Eq. (46). Then, M is a Markov generator on
R

jSj. If � solves (46), then

y

m

:=

X

�2�

m

�

�

(50)

satisfies the differential equation (1), i.e., _y

m

=

P

n

y

n

(M

nm

+ R

n

Æ

nm

). IfM
is reversible with respect to ~� = (~�

�

)

�2S

, M is reversible with respect to � =

(�

m

)

m2S

, where �
m

=

P

�2�

m

~�

�

. IfM + R has principal left eigenvector ~

h,

then M +R has principal left eigenvector h with h
m

=

P

�2�

m

~

h

�

.

Proof. The proof is a straightforward verification. Note first that M is a Markov
generator (onRjSj), because, for any � 2 �

m

,

X

n2S

M

mn

=

X

n2S

X

�2�

n

M

��

=

X

�2S

M

��

= 0 ;

sinceM is a Markov generator.
Starting now from (50) and (46), we find

_y

m

=

X

�2�

m

_�

�

=

X

�2�

m

X

�2S

�

�

(M

��

+R

�

Æ

��

)

=

X

n2S

X

�2�

n

�

�

�

M

'(�);m

+R

'(�)

Æ

'(�);m

�

=

X

n2S

y

n

(M

nm

+R

n

Æ

nm

) ;

where we have used (48) and (49) in the second step, and (50) in the last, together
with the fact that bothM

'(�);m

and R
'(�)

Æ

'(�);m

are constant on every fibre �
m

.
Finally, the assertions on stationary distributionsand reversibility are direct ver-

ifications in the same spirit. ut

6. From sequence space to type space

In this Section, we will be more explicit and start from sequence space. The natural
scheme that will emerge involves the grouping of sequence positions together with
a ‘coarse-grained’ dependence on some ‘genetic distance’. Many of the frequently-
used models fall into this scheme. Related results appear in statistical physics, cf.
[7,6], from where we will borrow some techniques.

Let us begin with the general setup for a mutation-reproduction model on se-
quence space. We will assume that the type � of an individual is characterized by
a (DNA, RNA) sequence which we take to be an element of the space S := �

N

with � = f1; : : : ; qg; we write � = (�

1

; : : : ; �

N

). For generality, we let q be an
integer> 2; if q = 2, the alternative choice� = f�1; 1g is often more convenient.
Consider now the partition of the index set � = f1; : : : ; Ng into d disjoint subsets
�

i

, i.e.,

� =

_

[

16i6d

�

i

: (51)
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Let P(�) = f(�

1

; : : : ; �

q

) j �

`

> 0;

P

`

�

`

= 1g denote the set of probability
measures on �. Set, with obvious meaning,

P

�

i

(�) := P(�) \

n

0;

1

j�

i

j

;

2

j�

i

j

; : : : ; 1�

1

j�

i

j

; 1

o

q

and

P

(�

1

;:::;�

d

)

(�) =

d

O

i=1

P

�

i

(�) : (52)

That is, P
(�

1

;:::;�

d

)

(�) is the set of product measures with values restricted to cer-
tain rationals induced by the partition.

Consider now the mapping (which will take the role of ' from the previous
Section)

m : �

N

�! Q

dq

; � 7! m(�) (53)

withm(�) =
�

m

`

i

(�)

�

16`6q

16i6d

and

m

`

i

(�) :=

1

j�

i

j

X

j2�

i

Æ

`;�

j

=

1

j�

i

j

�

�

fj j j 2 �

i

; �

j

= `g

�

�

: (54)

So,m`
i

(�) is the fraction of the sites at positions in�
i

which are in state `. Note that
these quantities satisfy

P

q

`=1

m

`

i

(�) = 1, i.e., for each i,m
i

(�) :=

�

m

1

i

(�); : : : ;m

q

i

(�)

�

defines a probability measure on �, with m
i

2 P

�

i

(�).
Describing the system in terms of these lumped quantities will only lead to a

simplification in connection with a suitable symmetry. In our case, this is given by
those permutations of the sites that are compatible with the chosen partition.

Let �
�

be the permutation group on � = f1; : : : ; Ng, i.e.,

�

�

:= f j  : �! � is a bijectiong ;

and �
(�

1

;:::;�

d

)

the subgroup compatible with the partition (51), i.e.,

�

(�

1

;:::;�

d

)

=

�

 2 �

�

j (�

i

) = �

i

; 1 6 i 6 d

	

' �

�

1

� � � � � �

�

d

:

We introduce the canonical action of the permutation group on �N through the
inverse permutation of sites, i.e., (�)

i

= �



�1

(i)

. We are now ready for

Theorem 4. Let�N

= f1; : : : ; qg

N , and matricesM = (M

�;�

)

�;�2�

N andR =

diagfR

�

j � 2 �

N

g be given, withM a Markov generator. Let � solve _� =

�(M+R). Further, let m be as in (53), and S = m(�

N

) � Q

dq. Assume now that
there exist a function g : �N

� �

N

�! R

>0

, and matrices ^

M = (

^

M

mn

)

m;n2S

and R = diagfR

n

j n 2 Sg, so that the following conditions are satisfied:

(a) g(�; �) = g(�; �) for all  2 �
(�

1

;:::;�

d

)

;

(b) M
��

=

^

M

m(�);m(�)

g(�; � ) for all �; � 2 �N

;

(c) R
�

= R

m(�)

for all � 2 �N .
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Then, y
m

:=

P

�2�

m

�

�

solves the differential equation _y = y(M + R), where

M

nm

=

^

M

nm

X

�2�

m

g(�; � )

independently of the choice of � 2 �
n

.M is a Markov generator. IfM is reversible
with respect to ~� = (~�

�

)

�2S

, then M is reversible with respect to � = (�

m

)

m2S

,
where �

m

=

P

�2�

m

~�

�

. If M+R has principal left eigenvector ~

h = (

~

h

�

)

�2S

,

then M +R has stationary distribution h = (h

m

)

m2S

with h
m

=

P

�2�

m

~

h

�

.

Proof. For  2 �
(�

1

;:::;�

d

)

, we have

m(�) = m(�) and (�

N

) = �

N

; (55)

where the first identity is obvious from (54). Equation (55) entails that

(�

m

) = �

m

; (56)

i.e., �
(�

1

;:::;�

d

)

acts transitively on �
m

.
In order to apply Theorem 1, we have to check assumption (49). Consider there-

fore
P

�2�

m

M

��

=

^

M

m(�);m

P

�2�

m

g(�; � ). For arbitrary  2 �
(�

1

;:::;�

d

)

, as-
sumption (a) and Eq. (56) give

 (�) :=

X

�2�

m

g(�; � ) =

X

�2�

m

g(�; � )

=

X

�

0

2(�

m

)

g(�; �

0

) =

X

�

0

2�

m

g(�; �

0

) =  (�) :

Due to the transitivity of �
(�

1

;:::;�

d

)

on �
m

,  (�) is constant on the fibres �
m(�)

.
Assumption (49) is therefore valid, and an application of Theorem 1 then gives the
desired result. ut

Examples of particular relevance emerge if g is a �
(�

1

;:::;�

d

)

-invariant distance,
such as the Hamming distance (i.e., the number of sites at which two sequences
differ). A very simple case was implicit in our example in Section 3, where the
single-step mutation model on S = f0; 1; : : :; Ng was interpreted in terms of a
model on f0; 1gN . Here, a site in state 0 or 1 corresponds to a site whose state does
or does not coincide with the respective state of a reference sequence (sometimes
called the ‘wildtype’). If the reproduction and mutation rates only depend on the
Hamming distance from the reference sequence, we are in a setting with d = 1. In
such a simple case, the reduced model is immediate. More elaborate examples will
be discussed in the next Section.
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7. Applications and examples

In many examples of sequence space models, the lumping construction as described
in the previous Sections leads to an effective model to which the maximum princi-
ple of Section Section 4 may then be applied. In particular, the following conditions
are necessary for Theorem 1 to apply:

(C1) The partition f�
i

g

d

i=1

in (51) is relatively uniform, in the sense that there exist
constants 0 <  6 C < 1 such that

 6 inf

16i6d

j�

i

j

N

6 sup

16i6d

j�

i

j

N

< C

uniformly inN . (Alternatively, this may be replaced by the single, and slightly
weaker, condition lim inf

N!1

inf

16i6d

j�

i

j

N

> 0; note that
P

i

j�

i

j = N by
construction.) This condition ensures that x = i=N will become a meaningful
continuous type variable for N !1.

For the following two conditions, a suitable enumeration of the elements of S is
required to ensure an appropriate representation of the matrices M and R.

(C2) The functiong that occurs in the sequence space mutation matrix and is required
in the lumping procedure (see Theorem 4) decreases sufficiently fast away from
the diagonal. Note that under condition (C1), for any �; � we have that

d

H

(�; � ) >

N

C

km(�) �m(� )k

1

;

where d
H

is the Hamming distance. Thus, if g has compact support indepen-
dent ofN (as in the example in Section 3), or if it decays sufficiently fast (e.g.,
exponentially) with d

H

, this entails the decay condition on f in Theorem 1.
(C3) After lumping, the effective reproduction and mutation matricesR andM must

lend themselves to a continuous approximation. That is, R
m

= r(m=N ) +

O(1=N ) and M
mn

= s

�

m=N; n=N

�

+ O(1=N ) with functions r and s that
are Cb

2

(D;R), where the implied constant in theO(1=N ) bound is uniform for
all m and n. This entails the approximation condition on E and F in (27) and
(28) that is also required for Theorem 1.

Clearly, (C2) and (C3) stipulate that the enumeration of the types is adapted to
the problem. Often the right choice is intuitively clear, as in the examples in Sec-
tion 3, and in [17]. But sometimes more thought is required, as will be illustrated
by means of a few examples and special cases below.

1. Some simplifications arise in the case q = 2, where we now use � = f�1; 1g

rather than f0; 1g. Here, the constraintm1

i

+m

2

i

= 1 can be used to reduce the
number of variables per subset to one. It is convenient to set b

i

� m

1

i

�m

2

i

. Eq.
(52) is then replaced by

P

(�

1

;:::;�

d

)

(�) =

d

O

i=1

f�1;�1 +

2

j�

i

j

; : : : ; 1�

2

j�

i

j

; 1g ;
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and we obtain the simple formula

b

i

(�) =

1

j�

i

j

X

j2�

i

�

j

:

2. The case d = 1 corresponds to so-called ‘mean field models’. They have been
studied in the case where g(�; � ) = 0 for d

H

(�; � ) > 1, i.e., mutation is re-
stricted to neighbours in sequence space (see [3,4,37,5,21] for q = 2, and [22,
17] for q = 4).

3. A special type of models that falls into the above class is related to fitness land-
scapes based on Hopfield Hamiltonians. These are special cases of spin-glass
models [31] that were originally motivated by neural networks, then became
prototype models for random interactions in statistical physics, and were later
also used as tunably rugged fitness landscapes in biology [30,35]. We adopt
from [6] the lumping procedure for the case q = 2 (the general setting q > 2

can be found in [18]). We consider the sequence space S = �

N

= f�1; 1g

N .
A Hopfield Hamiltonian is constructed by choosing at random M independent
elements �1; : : : ; �M from �

N . Given such a choice, one defines

H

N

(�; �) :=

1

N

M

X

�=1

N

X

i;j=1

�

i

�

j

�

�

i

�

�

j

= N

M

X

�=1

�

!

�

(�)

�

2

;

where

!

�

(�) :=

1

N

N

X

i=1

�

i

�

�

i

=

1

N

h�; �

�

i :

It is convenient to associate with the collection of row vectors �� the M � N
matrix � = (�

�

i

)

16�6M

16i6N

. We denote by �� the rows and by �
i

the columns of this
matrix. A partition �

1

; : : : ; �

d

with d = 2

M is now obtained as follows. Let
e

1

; : : : ; e

d

�

e

k

= (e

�

k

)

1��6M

�

denote an enumeration of all M -dimensional
column vectors with entries �1. Then we set

�

k

:= fi 2 � j �

i

= e

k

g :

This results in

!

�

(�) =

1

N

d

X

k=1

e

�

k

X

i2�

k

�

i

=

1

N

d

X

k=1

j�

k

je

�

k

b

k

(�) ;

and so

H

N

(�; �) = N

N

X

�=1

d

X

k;`=1

e

�

k

e

�

`

j�

k

jj�

`

jb

k

(�)b

`

(�)

is a function of b
i

(�). Thus, if we consider reproduction and mutation rates of
the form

M

��

= �

�

H

N

(�; �);H

N

(�; �)

�

g(�; � ) ;
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R

�

= �

�

H

N

(�; �)

�

;

with a nonnegative function � and any real function �, we may apply Theo-
rem 4 to derive the effective dynamics with lumping according to the values
of b

i

(�). In particular, the choice �(x) = x gives the familiar Hopfield fitness
landscape, and�(x) � 1 along with g(�; � ) = � for d

H

(�; � ) = 1, g(�; � ) = 0

for d
H

(�; � ) > 1, and g(�; �) = �2N� yields the well-known sequence space
mutation model where every site mutates independently and at the same rate �
(e.g., [5]).

8. Concluding remarks

The motivation for this work came from continuous-time mutation-selection mod-
els, cf. (3) and (4). However, it should have become clear that our results are not tied
to these specific models. They also hold for the corresponding discrete-time dynam-
ical systems, or if there is no underlying dynamics at all. Our main result (Theorem
1) simply yields asymptotic estimates for the leading eigenvalues of large matrices
that possess a certain continuous approximation, and whose elements decay suffi-
ciently fast away from the diagonal. These properties are shared by many systems,
in particular, by many spatially extended systems, where interactions between dis-
tant components are weak.
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