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Abstract: We investigate the long-time behavior of the Glauber dynamics for the ran-
dom energy model below the critical temperature. We establish that for a suitably chosen
timescale that diverges with the size of the system, one can prove that a natural auto-
correlation function exhibits aging. Moreover, we show that the long-time asymptotics
of this function coincide with those of the so-called “REM-like trap model” proposed
by Bouchaud and Dean. Our results rely on very precise estimates on the distribution of
transition times of the process between different states of extremely low energy.

1. Introduction and Background

1.1. Introduction. In this paper we continue the analysis of the Glauber dynamics of the
random energy model that was started in [BBG1]. We refer the reader to the introduction
of that paper for the general background of the problem.

We recall that we consider the following version of the REM. A spin configura-
tion σ is a vertex of the hypercube SN ≡ {−1, 1}N . On an abstract probability space
(�,F, P ) we define the family of i.i.d. standard normal random variables {Xσ }σ∈SN .
We set Eσ ≡ [Xσ ]+ ≡ (Xσ ∨ 0). We define a random (Gibbs) probability measure on
SN , µβ,N , by setting

µβ,N(σ ) ≡ eβ
√
NEσ

Zβ,N
, (1.1)

where Zβ,N is the normalizing partition function1. It is well-known [D1, D2] that this
model exhibits a phase transition at βc = √

2 ln 2. For β ≤ βc, the Gibbs measure is

∗ Work Partially supported by the Swiss National Science Foundation under contract 21-65267.01
∗∗ On leave from CPT-CNRS, Luminy, Case 907, 13288 Marseille Cedex 9, France. E-mail:
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1 The standard model has Xσ instead of Eσ . This modification has no effect on the equilibrium

properties of the model, and will be helpful for setting up the dynamics.
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supported, asymptotically as N ↑ ∞ on the set of states σ for which Eσ ∼ √
Nβ, and

no single configuration has positive mass. For β > βc, on the other hand, the Gibbs
measure gives positive mass to the extreme elements of the order statistics of the family
Eσ .

The dynamics we will consider is a discrete time Glauber dynamics. That is we con-
struct a Markov chain σ(t) with state space SN and discrete time t ∈ N by prescribing
transition probabilities pN(σ, η) = P [σ(t + 1) = η|σ(t) = σ ] by

pN(σ, η) =






1
N
e−β

√
NEσ , if ‖σ − η‖2 = 2

1 − e−β
√
NEσ , if σ = η

0, otherwise

. (1.2)

Note that the dynamics is also random, i.e. the law of the Markov chain is a measure
valued random variable on � that takes values in the space of Markov measures on
the path space SN

N . We will mostly take a pointwise point of view, i.e. we consider the
dynamics for a given fixed realization of the disorder parameter ω ∈ � (we persistently
suppress the dependence on ω in the notation).

It is easy to see that this dynamics is reversible with respect to the Gibbs measure
µβ,N . One also sees that it represents a nearest neighbor random walk on the hypercube
with traps of random depths (i.e. the probability to make a zero step is rather large when
Eσ is large)2.

1.2. Bouchaud’s trap model. In this sub-section we will explain the heuristics of the
dynamics of the REM that was developed in several papers by Bouchaud and others [B,
BD, BM, BCKM]. We will actually give a slightly varied form of this model that will
fit better with the rigorous analysis we will present later. Understanding the trap model
will provide a crucial guideline for the analysis of the full model later on.

The basic idea of Bouchaud can be explained as follows.As was explained in [BBG1],
the Gibbs measure of the REM for β >

√
2 ln 2 is concentrated, asymptotically, on a

countable set of states. Therefore we know that the Glauber dynamics for these temper-
atures will spend almost all of its time in these same states. This suggests, as we will
do in the main part of the paper, to consider the dynamics on these states at appropriate
time scales. Instead of doing this, Bouchaud proposes to define directly a new dynamics
on these countably many states in the infinite volume limit3 that he expects to behave in
the same way as the real model.

Thus we start with the random measure µ̃β defined in Eq. (1.12) of [BBG1]. We want
to introduce a stochastic process on the support of this measure that leaves µ̃β invariant.
Obviously we can identify the support of this measure with the atoms of the Poisson
point process P (defined in Sect. 1.2 of [BBG1]). The question is what the transition
probabilities should be.

Bouchaud proposes the following: Starting at a state i with energy Ei , the process
waits an exponential time of mean τ0 exp(αEi) (where α has the physical meaning of
α = β/βc), and then jumps at random to any of the other states j with equal probability.

2 We have chosen this particular dynamics for technical reasons. To study e.g. the Metropolis algorithm
would require some extra work, but we expect essentially the same results to hold.

3 This is completely analogous to the procedure of Ruelle to define a model based on the Poisson pro-
cess as the infinite volume version of Derrida’s REM rather than proving the convergence of Derrida’s
model to this limit.
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Here τ0 denotes a time-scale that will have to be chosen appropriately later. The problem
is that while we would want the process to reach each state with equal probability, this
makes no sense given that there are infinitely many states. Thus we have to introduce
some cut-off procedure. Bouchaud proposes to allow jumps only to the M states of
largest mass, and to take the limit as M ↑ ∞ in the end. We find it more instructive
to restrict our process to states whose energy is larger than E, where E is a parameter
that will be taken to −∞ later 4. This is very convenient, since it amounts to replace
the Poisson process P (from Sect. 1.2 of [BBG1]) by its restriction PE to the half line
[E,∞). Since our new Poisson process has a finite intensity measure, it has a very
useful representation: Consider a random variable nE ∈ N that is Poisson distributed
with parameter

∫∞
E
e−xdx = e−E . Let Ei, i ∈ N be a family of i.i.d. real valued r.v.,

independent of nE whose common distribution has density eEe−xIx≥E with respect to
Lebesgue measure. Then PE is equal in distribution to

nE∑

i=1

δEi . (1.3)

Given a realization of PE , we can now define a Markov process on the random set
SE ≡ {1, . . . , nE}. Let YE(n), n ∈ N be a discrete time Markov chain with state space
SE . We will actually only consider the case where YE(n) are i.i.d. random variables with
some distribution q. Next we introduce, for each i ∈ N, a family Tn(i), n ∈ N of i.i.d.
random variables taking values in R+ and having an exponential distribution with rates
τi ≡ τ0 exp(αEi), i.e.

P [Tn(i) ≤ t] ≡ Fi(t) = 1 − e−t/τi . (1.4)

Now we set

Rn ≡
n∑

k=1

Tk(YE(k)) (1.5)

and

r(t) = n if Rn ≤ t < Rn+1. (1.6)

Finally, the Markov jump process is defined as

XE(t) ≡ YE(r(t)) t ≥ 0. (1.7)

Observe that the random variables τi are the atoms of a Poisson point processN ∗ obtained
from P by transformation with the map τ : E → τ0e

αE . A simple computation shows
that N ∗ is a Poisson process with intensity measure ν∗(dx) = α−1τ

1/α
0 x−(1+α)/αdx

(see [Ru]). We will also denote by N ∗
E the transform of the restricted process NE which

is of course just the restriction of N ∗ to the half-line [τ0e
−αE,∞).

Let us note that in the case where YE(n), n ∈ N are i.i.d., the random variables
Tk(YE(k)), k ∈ N are also i.i.d., and therefore r(t) is a renewal process. Moreover,
in the case when the distribution, q, of YE(k) is of the form q(YE(k) = i) = p(τi),

4 This has the advantage that via the parameter E we control explicitly the time-scale we consider,
whereas otherwise this would be some non-trivial random variable.
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for some non-negative function p satisfying
∑nE
i=1 p(τi) = 1, the law of the renewal

variable Tk(YE(k)) can be expressed in terms of the process N ∗
E as

P [Tk(YE(k)) > t] ≡ 1 − FE(t) =
nE∑

i=1

qi(1 − Fi(t)) =
∫

N ∗
E(ds)p(s)e

−t/s . (1.8)

The two point function that is used to characterize the “aging” phenomenon is the prob-
ability that during a time-interval [t, t + s] the process does not jump, i.e.


E(s, t) ≡ P
[∀u∈[t,t+s],XE(u−)=XE(u)

]
(1.9)

(we set f (u−) ≡ limv↑u f (v)). Here we assume that the initial distribution of the chain
coincides with the jump distribution, i.e., P(XE(0) = i) = p(τi).

The following theorem paraphrases the results on the asymptotic behaviour for this
correlation function as found by Bouchaud and Dean [BD]:

Proposition 1.1. Define

H0(w) ≡ 1

πcosec (π/α)

∫ ∞

w

dx
1

(1 + x)x1/α . (1.10)

Then, for α > 0,

lim
t,s↑∞

lim
E↓−∞


E(s, t)

H0(s/t)
= 1, P -a.s. (1.11)

Moreover, the asymptotic behavior ofH0(t/s)when s/t tends to zero or ∞, respectively,
is readily evaluated:
(i) If (s/t) ↓ 0,

H0(s/t) = 1 − 1

πcosec (π/α)

∫ s/t

0
dx

1

(1 + x)x1/α ∼ 1 − (s/t)1−1/α

(1 − 1/α)πcosec (π/α)
.

(1.12)

(ii) If (s/t) ↑ ∞,

H0(s/t) ∼ 1

πcosec (π/α)

∫ ∞

s/t

dx
1

x1+1/α = (t/s)1/α

(1/α)πcosec (π/α)
. (1.13)

In the remainder of this subsection we outline the proof of this theorem.

Lemma 1.2. The function 
E(s, t) defined in (1.9) satisfies the equations


E(s, t) = 1 − FE(s + t)+
∫ t

0

E(s, t − u)dFE(u). (1.14)

Proof. The proof of this lemma is elementary since
E(s, t) is a function of the renewal
process r(t) alone. ��
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Remember that we study the solution of this equation in the limit when E ↓ −∞.
For this it is important to make a choice of the time-scale τ0. The choice τ0 = e−αE is
natural since in this way we will measure time at the scale of the fastest states5. Our first
step will be to replace FE by its limit6

F∞(t) ≡ 1 − α−1
∫ ∞

1
dxe−t/xx−(1+α)/α (1.15)

which is no longer random. From now on we will only consider the case when q is the
uniform measure, qi = 1

nE
. Let 
∞(s, t) denote the unique solution of the equation


∞(s, t) = 1 − F∞(s + t)+
∫ t

0

∞(s, t − u)dF∞(u). (1.16)

Lemma 1.4. For all s, t ≥ 0,

lim
E↓−∞


E(s, t) = 
∞(s, t), P -a.s. (1.17)

The limiting equation (1.16) is solved following standard procedures (see e.g. [Fe]).
One defines the renewal function M(t) that solves the equation

M(t) = F∞(t)+
∫ t

0
M(t − u)dF∞(u). (1.18)

In terms of this function, the solution of (1.16) is then given as


∞(s, t) = 1 − F∞(s + t)+
∫ t

0
(1 − F∞(s + t − u))dM(u). (1.19)

Setting f∞(t) ≡ F ′∞(t),

f∞(t) = α−1
∫ ∞

1
e−t/xx−(2α+1)/αdx. (1.20)

Denote by g∗ the Laplace transform of a function g, i.e. g∗(u) = ∫∞
0 e−utg(t). Then

F ∗
∞(u) = u−1 − α−1

∫ ∞

1

dx

(ux + 1)x1/α

= u−1 − α−1u(1−α)/α
∫ u∞

u

dx

(1 + x)x1/α . (1.21)

In the last expression, the integration is understood to be along a transformed path in the
complex plane if u is complex. Note that7

∫ ∞

0

dx

(1 + x)x1/α = �(α−1)�(1 − α−1) = π

sin(π/α)
= πcosec (π/α). (1.22)

5 Other choices may lead to completely different behaviors.
6 In this introduction we will not justify the various passages to limits (which is also never done in the

physics literature). Note however that these issues are treated in Sect. 4, and the results proven there can
easily be used to justify everything that we will do in the present section.

7 Performing the change of variable x = y−1 − 1,
∫∞

0
dx

(1+x)x1/α = ∫ 1
0

dy

(1−y)1/αy1−1/α , where one

recognizes the Beta integral
∫ 1

0
dy

(1−y)µ−1yν−1 = �(µ)�(ν)
�(µ+ν) .
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Thus, when u → 0, the integral in (1.21) converges to the constant πcosec (π/α).
Similarly, we have that

f ∗
∞(u) = α−1

∫ ∞

1

1

1 + ux
x−(1+α)/αdx. (1.23)

In particular, f ∗∞(0) = 1, and

1 − f ∗
∞(u) = α−1

∫ ∞

1

(

1 − 1

1 + ux

)

x−(1+α)/αdx = α−1u1/α
∫ u∞

u

dx

(x + 1)x1/α .

(1.24)

Taking the Laplace transform of (1.18) this implies that

M∗(u) = F ∗∞(u)
1 − f ∗∞(u)

= 1

α−1u(1+α)/α ∫ u∞
u

dx
(1+x)x1/α

− u−1 (1.25)

and, by classical results on the asymptotics of the inverse Laplace transform (see [Doe],
Vol. 2, Sect. 7), this in turn implies that for t ↑ +∞,

M(t) ∼ t1/α

πα−1�(α−1)cosec (π/α)
− 1. (1.26)

Finally, we can compute the asymptotics of the solution of Eq. (1.16). Here we will
directly make use of the fact that the Laplace transform of 
∞(s, t) is given explicitly
as


∗
∞(s, u) =

α
∫∞

1 e−s/x dx
(ux+1)x1/α

1 − f ∗∞(u)
. (1.27)

We have already established the asymptotics of 1 − f ∗∞(u) near u = 0. We still need to
treat the numerator. It will be convenient to write

α−1
∫ ∞

1
e−s/x

dx

(ux + 1)x1/α = α−1
∫ ∞

1
dx

∫ ∞

s/x

dve−v
1

(ux + 1)x1/α

= α−1
∫ ∞

0
dve−v

∫ ∞

s/v∧1
dx

1

(ux + 1)x1/α

= α−1
∫ ∞

0
dve−v

∫ ∞

s/v

dx
1

(ux + 1)x1/α

−α−1
∫ ∞

s

dve−v
∫ 1

s/v

dx
1

(ux + 1)x1/α . (1.28)

Now the first term can be conveniently represented as uα times an explicit Laplace
transform:

α−1
∫ ∞

0
dve−v

∫ ∞

s/v

dx
1

(ux + 1)x1/α = α−1u1/α
∫ ∞/u

0

dve−uv
∫ u∞

s/v

dx
1

(x + 1)x1/α . (1.29)
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Note that since all integrands vanish at infinity in the right-half plane, 0/u and u∞
can be replaced with 0 and ∞, resp., i.e. the integration contours can be deformed to
integrations along the real line. We will show that this term is the dominant one.

In fact, combining (1.24) with (1.28) we get from (1.27) that


∗
∞(s, u) =

∫∞/u

0 dve−uv
∫ u∞
s/v

dx 1
(1+x)x1/α

∫∞
u

dx
(1+x)x1/α

−
∫∞
s
dve−v

∫ 1
s/v
dx 1

(u+1/x)x1/α

u1/α
∫∞
u

dx
(1+x)x1/α

. (1.30)

Now the integral in the denominator equals
∫ ∞

u

dx

(1 + x)x1/α =
∫ ∞

0

dx

(1 + x)x1/α −
∫ u

0

dx

(1 + x)x1/α

= πcosec (π/α)− u1−1/α
∞∑

n=0

(−1)n
un

n+ 1 − 1/α
, (1.31)

where the last sum is convergent for |u| < 1. Thus the leading singular (at u = 0) term
from the first term in (1.30) is given by

∫∞
0 dve−uv

∫∞
s/v
dx 1

(1+x)x1/α

πcosec (π/α)
, (1.32)

which obviously is the Laplace transform of the function H0(s/t).
It remains to consider the second term in (1.30). Here the numerator converges to a

constant as u tends to zero, in fact, at u = 0 it equals

∫ ∞

s

dve−v
∫ 1

s/v

dx
1

x1/α = 1

1 − 1/α

∫ ∞

s

dye−y
[
1 − y1−1/α

]
≤ const.e−s . (1.33)

Therefore the leading asymptotic of the second term is given by

Const.u−1/α e−s . (1.34)

The inverse Laplace transform of the second term has therefore the leading asymptotic
behavior

H1(s, t) ∼ Const.t1/α−1 e−s . (1.35)

Note that while the asymptotics in t looks the same as that of the second term ofH0(s/t)

in the case s/t ↓ 0, due to the exponential decay in s, this term can be neglected if s is
large. Thus we have now established the “aging” asymptotics found in Bouchaud.

1.3. The renewal equations. Statement of the main results. Guided by Bouchaud’s trap
model, we can now construct the setup for the analysis of aging in the full REM dynam-
ics. First of all the natural subset of states in SN to play the rôle of the state space in the
trap model is the set

TN(E) ≡ {σ ∈ SN
∣
∣Eσ ≥ uN(E)

}
, (1.36)
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where (recall Sect. 1.1 of [BBG1])

uN(x) ≡
√

2N ln 2 + x√
2N ln 2

− 1

2

ln(N ln 2)+ ln 4π√
2N ln 2

. (1.37)

We will call the set TN(E) “the top”, and frequently suppress indices, writing TN(E) =
T (E) = T whenever no confusion is likely (the single letter T will only be used within
proofs and the change in the notation will always be clearly signalled). Moreover, we
will use the convention that M ≡ |TN(E)|, and d ≡ 2M .

The idea is clearly to observe the process only at its visits to TN(E). The natural
generalization of Bouchaud’s correlation function 
E(s, t) is therefore the probability
that the process does not jump from a state in the top to another state in the top during a
time interval of the form [n, n+m]. There is some ambiguity how this should be defined
precisely, but the following definition appears most convenient. To formulate it, let us
introduce the following random times. For any k ∈ N, let k− denote the last time before
k at which the process has visited the top, i.e.

k− ≡ sup {l < k | σ(l) ∈ TN(E)} . (1.38)

Now set


(m, n,N,E) ≡ P
[∀k∈[n+1,n+m] σ(k) �∈ TN(E)\σ(k−)

]
. (1.39)

Of course we still have to specify the initial distribution. To be as close as possible to
Bouchaud, the natural choice is the uniform distribution on TN(E) that we will denote
by πE . However, we will also need to introduce the respective functions with starting
point in an arbitrary state σ . Thus we set


σ (m, n,N,E) ≡ P
[∀k∈[n+1,n+m] σ(k) �∈ TN(E)\σ(k−) | σ(0) = σ

]
(1.40)

and


(m, n,N,E) ≡ 1

|TN(E)|
∑

σ∈TN (E)

σ (m, n,N,E). (1.41)

We will also use vector notation and write
(n,m,N,E) for theM dimensional vector
with components 
σ (n,m,N,E), σ ∈ TN(E). We are now ready to state the main
theorem of this paper.

Theorem 1. Let β >
√

2 ln 2. Then there is a sequence cN ∼ exp(β
√
NuN(E)) such

that for any ε > 0,

lim
t,s↑∞

lim
E↓−∞

lim
N↑∞

P

[∣
∣
∣
∣

([cNs], [cN t], N,E)


∞(s, t)
− 1

∣
∣
∣
∣ > ε

]

= 0, (1.42)

where 
∞(s, t) is the limiting correlation function of the trap model, defined in (1.17).

Before closing the introduction, let us say a few words about the heuristics of this the-
orem and the difficulties we will have to expect. Let us recall from [BBG1] the notation,
for σ ∈ SN, I ⊂ SN ,

τσI ≡ inf{n > 0 | σ(n) ∈ I, σ (0) = σ } (1.43)

for the first positive time the process starting in σ reaches the set I . Note that it is easy to
derive a renewal equation for the quantities (1.40). Namely, the event in the probability
in (1.40) occurs either
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(i) if σ(k) �∈ TN(E)\σ , for all k ∈ [0, n+m], or
(ii) if there is 0 < l ≤ n, s.t. l = inf{k ≤ n | σ(k) ∈ TN(E)\σ }, and∀k∈[n+1,n+m] σ(k) �∈

TN(E)\σ(k−).
Since this decomposition is disjoint, it implies immediately the following system of

renewal equations (writing T (E) = TN(E)):


σ (m, n,E) = P[τσT (E)\σ > m+ n]

+
n∑

k=1

∑

σ ′∈T (E)\σ
Pσ [τσT (E)\σ = k,Xk = σ ′, Xl �∈ T (E)\Xl− ,∀n≤ l≤m+ n]

= P[τσT (E)\σ > m+ n] +
n∑

k=1

∑

σ ′∈T (E)\σ
P[τσσ ′ = τσT (E)\σ = k]
σ ′(m, n− k,E).

(1.44)

The extra difficulty stems from the fact that the kernels P[τσ
σ ′ = τσT (E)\σ = k] depend

on both σ and σ ′, while in the trap model it is assumed that this quantity is independent
of σ ′ for any value of k. Indeed, if we had the relation

P[τσσ ′ = τσT (E)\σ = k] = πE(σ
′)

1 − πE(σ)
P[τσT (E)\σ = k] (1.45)

averaging (1.44) over σ would yield


(m, n,E) =
∑

σ∈T (E)
πE(σ )P[τσT (E)\σ > m+ n]

+
n∑

k=1

∑

σ∈T (E)
πE(σ )P[τσT (E)\σ = k]

×
∑

σ ′∈T (E)\σ

πE(σ
′)

1 − πE(σ)

σ ′(m, n− k,E)

=
∑

σ∈T (E)
πE(σ )P[τσT (E)\σ > m+ n]

+
n∑

k=1

∑

σ∈T (E)
πE(σ )P[τσT (E)\σ = k]
(m, n− k,E)

+
n∑

k=1

∑

σ∈T (E)

πE(σ )

1 − πE(σ)
P[τσT (E)\σ = k]πE(σ)

× [
(m, n− k,E)−
σ (m, n− k,E)]. (1.46)

The last term is bounded by |T (E)|−1 which tends to zero uniformly as E ↑ ∞ and
would be treated as an error term. If we ignore this term for a moment, (1.46) takes the
desired form:

Setting

FN,E(n) ≡
∑

σ∈T (E)
πE(σ )P[τσT (E)\σ > n] (1.47)
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and

fN,E(n) ≡
∑

σ∈T (E)
πE(σ )P[τσT (E)\σ = n], (1.48)

Eq. (1.46) then becomes


(m, n,E) = FN,E(m+ n)+
n∑

k=1

fN,E(k)
(m, n− k,E), (1.49)

which has the form of the equation in the trap model. Unfortunately, even though we have
shown in [BBG1] that (1.45) is true (up to an negligible error) when summed over k, we
have not been able to find an argument that would show that (1.45) was true pointwise.
Thus the only way out appears to be to study the solution of the full system (1.44). This
will require some substantial preparations and will be undertaken only in Sect. 4.

The remainder of this paper is devoted to proving Theorem 1. In the next section we
recall some important results from [BBG1]. In Sect. 3 we prove the necessary refined
estimates on the probability distributions appearing as kernels or inhomogeneous terms
in the renewal system (1.44). Armed with these estimates, we will return to the analysis
of the solution of this system in Sect. 4 where we prove Theorem 1.

2. Basic Estimates

We will briefly recall a number of estimates that were proven in [BBG1] and that we
will use heavily in our analysis.

The first concerns various hitting probabilities.

Proposition 2.1. Set M = |T (E)|, d = 2M and δ(N) ≡ (
d
N

)1/2
logN . There exists a

subset E ⊂ � with P(E) = 1, such that for all ω ∈ E , for all N large enough, the
following holds:

For ε > 0 a constant, define the sets

B√
εN (σ ) = {σ ′ ∈ SN | ‖σ ′ − σ‖2 ≤

√
εN}, σ ∈ SN (2.1)

and

Wε(I) ≡
⋂

σ∈I
Bc√

εN
(σ ), I ⊆ SN. (2.2)

Then,

i) For all ε > 0 there exists a constant c > 0 such that, for all η ∈ T (E) and all
σ ∈ Wε(T (E)),

∣
∣
∣P
(
τση < τσT (E)\η

)
− 1

M

∣
∣
∣ ≤ d

NM
(1 + cδ(N)). (2.3)

ii) There exists a constant c > 0 such that, for all η ∈ T (E) and η̄ ∈ T (E) with η �= η̄,
∣
∣
∣e
β
√
NEη̄P

(
τ η̄η < τ

η̄

T (E)\η
)

− 1
M

∣
∣
∣ ≤ d

NM
(1 + cδ(N)). (2.4)
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iii) There exists a constant c > 0 such that, for all η ∈ T (E) and η̄ ∈ T (E) with η �= η̄,
∣
∣
∣P
(
τ η̄η < τ

η̄

T (E)\{η,η̄}
)

− 1
M−1

∣
∣
∣ ≤ d

N(M−1) (1 + cδ(N)). (2.5)

iv) There exists a constant c > 0 such that, for all η ∈ T (E),
∣
∣
∣e
β
√
NEηP

(
τ
η

T (E)\η < τηη

)
− (1 − 1

M

)∣∣
∣ ≤ (1 − 1

M

)
d
N
(1 + cδ(N)). (2.6)

v) There exists a constant c > 0 such that, for all σ /∈ T (E),
(
1 − 1

M

) (
1 − d

N
(1 + cδ(N))

) ≤ eβ
√
NEσP

(
τσT (E) < τσσ

)
≤ 1. (2.7)

vi) For all ε > 0 there exists a constant c > 0 such that, for all σ /∈ T (E) and all
σ̄ ∈ Wε(T (E) ∪ σ),

P

(
τ σ̄σ ≤ τ σ̄T (E)

)
≤ 1

M
+ d

NM
(1 + cδ(N)). (2.8)

The next statement (Theorem 1.4 of [BBG1]) gives sharp estimates on mean transition
times.

Theorem 2.2. Assume that α ≡ β/
√

2 ln 2 > 1. Then there exists a subset Ẽ ⊂ � with
P(Ẽ) = 1, such that for all ω ∈ Ẽ , for all N large enough, the following holds:

i) For all η ∈ T (E),

E(τ
η

T (E)\η) = 1

1 − 1
M

[
eβ

√
NEη + Wβ,N,T (E)

]
(1 +O(1/N)). (2.9)

ii) For all σ /∈ T (E),

E(τσT (E)) ≤ 1

1 − 1
M

[
eβ

√
NEσ + Wβ,N,T (E)

]
(1 +O(1/N)),

E(τσT (E)) ≥ 1

1 − 1
M

[

eβ
√
NEσ + 1 − eE(α − 1)

1 + 1/M
Wβ,N,T (E)

]

(1+O(1/N)). (2.10)

iii) For all η, η̄ ∈ T (E), η �= η̄,

∣
∣
∣E(τ

η
η̄ | τηη̄ ≤ τ

η

T (E)\η)− E(τ
η

T (E)\η)
∣
∣
∣ ≤ 1

1 − 1
M

Wβ,N,T (E)O(1/N), (2.11)

where

Wβ,N,T (E) ≡ e(α−1)E+β√
NuN(0)

M(α − 1)

(

1 + VN,EeE/2 α − 1√
2α − 1

)

(2.12)

and VN,E is a random variable of mean zero and variance one.

We will also make use of the following simple corollary to this proposition:

Corollary 2.3. Under the assumptions and with the notation of Theorem 2.2 we have:
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i) For all η, η̄ ∈ T (E), η �= η̄:
∣
∣
∣
∣

1

|T (E) \ η|
∑

η̄∈T (E)\η
E(τ

η
η̄ | τηη̄ ≤ τ

η

T (E)\η)− E(τ
η
η̄ | τηη̄ ≤ τ

η

T (E)\η)
∣
∣
∣
∣

≤ 1

1 − 1
M

Wβ,N,T (E)O(1/N). (2.13)

ii) For all η ∈ T (E),

0 < E(τ
η

T (E)\η)− P
−1(τ

η

T (E)\η < τηη ) ≤ 1

1 − 1
M

Wβ,N,T (E)(1 +O(1/N)). (2.14)

Proof of Corollary 2.3. The first assertion is an obvious consequence of the last asser-
tion of Theorem 2.2. The second assertion simply follows from Eq. (3.8) of [BBG1] and
is proven just as the first assertion of Theorem 2.2. ��

Equipped with this information we proceed in the next section to analyse the Laplace
transforms of the distribution functions of such transition times.

3. Estimates on Laplace Transforms

We will use the method of Laplace tranforms to solve the system of renewal equations
(1.44). Doing so this will require precise control on the Laplace transforms of the dis-
tribution functions of the probability distributions appearing in these equations. In this
section we derive the basic estimates on these Laplace transforms.

As in [BEGK1], Sect. 3, the first crucial step is an estimate of the maximal mean time
to reach the set T (E).

Lemma 3.1. Define

�(E) ≡ max
σ∈SN

EτσT (E) (3.1)

and

�̂(E) ≡ (1 − 1
|T (E)| )

−1eβ
√
NuN(0)+αE

[

1 + e−E

|T (E)|(α − 1)

(

1 + VeE/2 α − 1√
2α − 1

)]

× (1 +O(1/N)) , (3.2)

where V is a random variable of mean zero and variance 1. Then, under the assumptions
of Theorem 2.2,

�(E) ≤ �̂(E). (3.3)

Proof. For σ �∈ T (E), the bound EτσT (E) ≤ �̂(E) follows immediately from the es-
timate from Theorem 2.2, i). If σ ∈ T (E), the forward Kolmogorov equation shows
that

EτσT (E) =
∑

σ ′∈T (E)
pN(σ, σ

′)+
∑

σ ′ �∈T (E)
pN(σ, σ

′)
(
1 + Eτσ

′
T (E)

)
. (3.4)

Using the previous result in (3.4) one sees that the same estimate holds in this case. ��
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We define, for σ ∈ SN , I, J ⊂ SN , and u ∈ D ⊂ C,

GσI,J (u) ≡ Eeuτ
σ
I I{τσI ≤τσJ } ≡

∞∑

n=1

P[τσI = n ≤ τσJ ]enu, (3.5)

where D is chosen such that the right-hand side of (3.5) exists. Note that this is al-
ways the case for u s.t. �(u) ≤ 0, but in fact, for σ, I, J given, there will be some
u0 ≡ u0(σ, I, J ) > 0, s.t. GσI,J (u) exists for all u with �(u) ≤ u0. Similarly we define

GσI (u) ≡ Eeuτ
σ
I . (3.6)

Theorem 3.2. For any σ ∈ T (E), the Laplace transform GσT (E)\σ (u) can be written as

GσT (E)\σ (u) = aσ

1 − (1 − e−u)EτσT (E)\σ bσ
+ Rσ (u), (3.7)

where

aσ = 1 +O
(
�̂(E)/EτσT (E)\σ

)
, (3.8)

bσ = 1 +O
(
�̂(E)/EτσT (E)\σ

)
, (3.9)

and Rσ (u) is analytic in the half-plane �(u) < 1/�̂(E), periodic with period 2π in the
imaginary direction, and satisfies

(i) for all |u| ≤ a/�̂(E),

|Rσ (u)| ≤ C(a)
(
e−β

√
NEσ �̂(E)

)2
(3.10)

and
(ii) for all u with �(u) < (1 − ε)�̂(E) and |1 − e−u| ≥ 2ε−1e−β

√
NEσ

|Rσ (u)| ≤ 2
e−β

√
NEσ

|1 − e−u|(1 − �(u)�̂(E)) . (3.11)

Moreover,

aσ + Rσ (0) = 1. (3.12)

This proposition allows in fact to prove very good estimates on the distribution func-
tion of τσT (E)\σ . Note first that if

L(u) ≡
∞∑

n=0

eunP[τσT (E)\σ > n], (3.13)

then

L(u) =
GσT (E)\σ (u)− 1

eu − 1
. (3.14)
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Corollary 3.3. With the notation of Theorem 3.2, for any ε > 0 and for any positive
integer n ∈ N,

P[τσT (E)\σ = n] = aσ

EτσT (E)\σ bσ
e
−n/Eτσ

T (E)\σ bσ

+O
(
e−n(1−ε)/�̂(E)e−β

√
NEσ ε−1 ln

(
�̂(E)ε

))
, (3.15)

and (for n > 0)

P[τσT (E)\σ > n] = aσ e
−n/Eτσ

T (E)\σ bσ +O
(
e−n(1−ε)/�̂(E)e−β

√
NEσ �̂(E)ε−1

)
.

(3.16)

Proof of Theorem 3.2. Our analysis of the Laplace transforms will follow closely the
strategy employed in [BEGK1], but some simplifications will occur due to the particular
properties of the model at hand.

3.1. A priori estimates on Laplace transforms. As in [BEGK1], Lemma 3.1 implies
immediate control on the Laplace transforms gσ

′
σ (u) ≡ Gσ

′
σ,T (E)(u):

Lemma 3.4. For all ε > 0, and for all real u ≤ (1 − ε)/�̂(E), for all σ, σ ′ ∈ SN ,

gσ
′

σ (u) ≤ 1

1 − u�̂(E)
≤ ε−1. (3.17)

Proof. The proof is identical to the proof of Lemma 3.2 of [BEGK1]. Just note that if
we set

vu(σ
′) ≡






gσ
′

σ (u), for σ ′ �∈ T (E) ∪ σ
1, for σ ′ = σ

0, for σ ′ ∈ T (E)\σ
(3.18)

then vu is the unique solution of the Dirichlet problem

(1 − euPN)vu(σ
′) = 0, if σ ′ �∈ T (E) ∪ σ,

vu(σ ) = 1,
vu(σ

′) = 0 if σ ′ ∈ T (E)\σ. (3.19)

Setting wu(σ ′) ≡ vu(σ
′)− v0(σ

′), we see that wu solves

(1 − PN)wu(σ
′) = (1 − e−u)vu(σ ′), if σ ′ �∈ T (E) ∪ σ,

wu(σ
′) = 0 if σ ′ ∈ T (E) ∪ σ. (3.20)

The solution of (3.20) can be represented as

wu(σ
′) = E

τσ
′

T (E)∪σ−1
∑

t=1

(1 − e−u)vu(Xt ) (3.21)

implying that

vu(σ
′) = P[τσ

′
σ = τσ

′
T (E)∪σ ] + (1 − e−u)E

τσ
′

T (E)∪σ−1
∑

t=1

vu(Xt ). (3.22)
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Setting S(u) ≡ maxσ ′ �∈T (E)∪σ vu(σ ′), (3.22) implies

S(u) ≤ 1 + (1 − e−u) max
σ ′ �∈T (E)∪σ

Eτσ
′

T (E)∪σ S(u)

≤ 1 + u�̂(E)S(u), (3.23)

and hence

S(u) ≤ 1

1 − u�̂(E)
(3.24)

which proves the lemma. ��
This basic estimate can be improved in certain cases:

Lemma 3.5. Let σ ∈ T (E). Then, for u as in Lemma 3.4,

(i)

GσT (E)\σ,σ (u) ≤ e−β
√
NEσ

eu

1 − u�̂(E)
≤ 2ε−1

P[τσT (E) < τσσ ], (3.25)

(ii)

Gσσ,T (E)(u) ≤ eu
(

1 + e−β
√
NEσ

1

1 − u�̂(E)

)

≤ 1 + 2ε−1
P[τσT (E) < τσσ ]. (3.26)

Proof. Let us first prove (i). This goes essentially along the same lines as the proof of
Lemma 3.4. Define

ψu(σ
′) ≡






Gσ
′
T (E)\σ,σ (u), for σ ′ �∈ T (E) ∪ σ

1, for σ ′ ∈ T (E)\σ
0, for σ ′ = σ

(3.27)

and φu(σ ′) ≡ ψu(σ
′)− ψ0(σ

′). Then φu solves

(1 − PN)φu(σ
′) = (1 − e−u)ψu(σ ′), if σ ′ �∈ T (E),

φu(σ
′) = 0 if σ ′ ∈ T (E). (3.28)

Just as in the previous proof, we get first the uniform bound

ψu(σ
′) ≤ 1

1 − u�̂(E)
. (3.29)

Now

GσT (E)\σ,σ (u) =
∑

σ ′ �=σ
pN(σ, σ

′)euGσ
′
T (E)\σ,σ (u) ≤

∑

σ ′ �=σ

1

N
e−β

√
NEσ

eu

1 − u�̂(E)
.

(3.30)

Since P[τσT (E) < τσσ ] ∼ e−β
√
NEσ , (i) is proven.

In the same way,

Gσσ,T (E)(u) = eupN(σ, σ )+ eu
∑

σ ′ �=σ
pN(σ, σ

′)Gσ
′
σ,T (E)(u)

≤
(

1 + e−β
√
NEσ

1

1 − u�̂(E)

)

eu (3.31)

and this proves (ii). ��
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Finally we turn to the Laplace transform of hitting times without extra exclusion sets.

Proposition 3.6. Let σ ∈ T (E). Then, for u = ρ/EτσT (E)\σ , if |ρ| ≤ (1 − γ ), γ > 0,

GσT (E)\σ
(
ρ/EτσT (E)\σ

)
= 1

1 − ρ
[
1 +O(e−αu

−1
N (Eσ )+E)+ ρO

(
(�̂(E)/EτσT (E)\σ )2

)]

×
(

1 + ρO
(
�̂(E)/EτσT (E)\σ

))
. (3.32)

Proof. As in the analogous analysis in [BEGK1], the starting point of our analysis is the
renewal equation

GσT (E)\σ (u) =
GσT (E)\σ,σ (u)

1 −Gσσ,T (E)(u)
. (3.33)

It is reasonable to rewrite this as

GσT (E)\σ (u) =
P[τσT (E)\σ < τσσ ]

1 −Gσσ,T (E)(u)
+
GσT (E)\σ,σ (u)−GσT (E)\σ,σ (0)

1 −Gσσ,T (E)(u)
≡ (I )+ (II ).

(3.34)

Using the Taylor-Lagrange formula with remainder to second order, we have

(I ) =
P[τσT (E)\σ < τσσ ]

P[τσT (E)\σ < τσσ ] − uEτσσ I{τσσ ≤τσ
T (E)

} − u2/2 d2

du2G
σ
σ,T (E)(ũ)

=


1 − ρ
Eτσσ I{τσσ ≤τσ

T (E)
}

P[τσT (E)\σ < τσσ ]EτσT (E)\σ
− 1

2
ρ2

d2

du2G
σ
σ,T (E)(ũ)

P[τσT (E)\σ < τσσ ](EτσT (E)\σ )2





−1

.

(3.35)

We want to show that the coefficient of ρ in the denominator is essentially equal to one,
while the coefficient of ρ2 tends to zero. Differentiating the renewal equation (3.33) and
evaluating at u = 0 gives

E

[
τσT (E)\σ |τσT (E)\σ = τσT (E)

]
= E

[
τσT (E)\σ

]
−

Eτσσ I{τσσ ≤τσ
T (E)

}
1 − P

[
τσσ ≤ τσT (E)

] , (3.36)

which implies immediately that

Eτσσ I{τσσ ≤τσ
T (E)

}
P[τσT (E)\σ < τσσ ]EτσT (E)\σ

≤ 1. (3.37)

Moreover,

Eτσσ I{τσσ ≤τσ
T (E)

} ≥ P[τσσ = 1] = 1 − eβ
√
NEσ , (3.38)

while by (2.9) of Theorem 2.2 and (2.6) of Proposition 2.1, the denominator in (3.37) is
bounded from above by

1 + e−αu
−1
N (Eσ )Ve−E/2 α − 1√

2α − 1
. (3.39)
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Thus

Eτσσ I{τσσ ≤τσ
T (E)

}
P[τσT (E)\σ < τσσ ]EτσT (E)\σ

≥ 1 − e−β
√
NEσ

1 + e−αu
−1
N (Eσ )VeE/2 α−1√

2α−1

. (3.40)

Next we turn to the coefficient of ρ2. By (3.31) we can write

Gσσ,T (E)(u) = eupN(σ, σ )+ f (u), (3.41)

where f (u) is analytic in the half-plane �(u) < 1/�̂(E) and satisfies

f (u) ≤ e−β
√
NEσ

eu

1 − u�̂(E)
. (3.42)

By Cauchy’s integral formula, this implies that for �(u) < (1 − γ )/�̂(E),

∣
∣f ′′(u)

∣
∣ ≤ e−β

√
NEσ

Cγ−1

(�̂(E)−1 − �(u))2 (3.43)

with some universal numerical constant C. Thus for u = λ/EτσT (E)\σ ≤ (1 −γ )/�̂(E),
γ > 0, we get

∣
∣
∣f

′′
(
λ/EτσT (E)\σ

)∣
∣
∣ ≤ e−β

√
NEσ Cγ−3�̂(E)2. (3.44)

Therefore, under the same condition,

∣
∣
∣
∣
∣
∣

d2

du2G
σ
σ,T (E)(ũ)

P[τσT (E)\σ < τσσ ](EτσT (E)\σ )2

∣
∣
∣
∣
∣
∣
≤ e−β

√
NEσ Cγ−2

P[τσT (E)\σ <τσσ ]

�̂(E)2

(EτσT (E)\σ )2
≤2Cγ−3 �̂(E)2

(EτσT (E)\σ )2
,

(3.45)

which is small if u−1
N (Eσ ) � E.

Finally we turn to the term (II). While the denominator is the same as in (I), the
numerator can now be written as

GσT (E)\σ,σ (u)−GσT (E)\σ,σ (0) = u
d

du
GσT (E)\σ,σ (ũ). (3.46)

This can be bounded in the same way as before, using the Cauchy estimates under the
same assumptions on u (with a different constant C), by

∣
∣
∣
∣
d

du
GσT (E)\σ,σ (ũ)

∣
∣
∣
∣ ≤ e−β

√
NEσ Cγ−2�̂(E). (3.47)

This shows that (II) can be estimated as a small fraction of (I). This concludes the proof
of the proposition. ��
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3.2. Analyticity properties. Let us note first that all Laplace transforms that we are con-
sidering can be identified with meromorphic functions that are given as the solutions
of Dirichlet problems of the same type as (3.19). Note also that trivially all these func-
tions are periodic with period 2π in the imaginary direction. Equation (3.33) allows to
derive more precise estimates on our Laplace transform than we have obtained so far.
Note that both Laplace transform on the left hand side of (3.33) are analytic in the half
plane �(u)<1/�̂. This implies that the only singularities ofGσT (E)\σ(u) in that half-plane
are poles at those values of u for which the denominator vanishes, i.e.

1 = Gσσ,T (E)(u). (3.48)

By inspection of the proof of Proposition 3.6, there is only one solution of this equation
in the strip −π ≤ �(u) ≤ π , uσ = ρ/EτσT (E)\σ , where ρ satisfies

1 − ρ = ρO
(
e−αu

−1
N (Eσ )+αE)+ ρ2O

(
(�̂(E)/EτσT (E)\σ )

2). (3.49)

This implies the existence of a solution ρ0 = 1 +O
(
(�̂(E)/EτσT (E)\σ )

2
)
.

This implies that the function GσT (E)\σ (u) has simple poles at uσ (mod + i2π), and

all other poles satisfy �(u) ≥ �̂(E)−1, �(u) = 0 or �(u) = π . Moreover, Proposition
3.6 implies that the residue at uσ equals

res uσ =
GσT (E)\σ (uσ )
d
du
Gσσ,T (E)(uσ )

= 1

EτσT (E)\σ

(
1 +O

(
(�̂(E)/EτσT (E)\σ )

2)
)
. (3.50)

This allows in particular to extend the validity of the renewal equation (3.33) to the
entire domain of analyticity of this function. This will prove very helpful in obtaining
good bounds. As a first observation, we note that the domain of validity of (3.32) can be
immediately extended to the set ρ < EτσT (E)\σ /�̂(E).

We will now estimate the difference between GσT (E)\σ (u) and the contribution from
the pole at uσ . We set

Rσ (u) = GσT (E)\σ (u)+
GσT (E)\σ,T (E)(uσ )

(u− uσ )
d
du
Gσσ,T (E)(uσ )

. (3.51)

We first give a uniform estimate of the modulus ofRσ on the disk |u| ≤ a/�̂(E), a < 1.
Note that a straightforward computation and the use of Taylor expansion to first order
shows that
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Rσ (u)

=
Gσ
T (E)\σ,T (E)(u)(u− uσ )

d
duG

σ
σ,T (E)

(uσ )−Gσ
T (E)\σ,T (E)(uσ )(G

σ
σ,T (E)

(u)−Gσ
σ,T (E)

(uσ ))

(1 −Gσ
σ,T (E)

(u))(u− uσ )
d
duG

σ
σ,T (E)

(uσ )

=
d
duG

σ
σ,T (E)

(uσ )
d
duG

σ
T (E)\σ,T (E)(ũ)− 1

2G
σ
T (E)\σ,T (E)(uσ )

d2

du2G
σ
σ,T (E)

(û)

d
duG

σ
σ,T (E)

(uσ )
d
duG

σ
σ,T (E)

(u′)
, (3.52)

where ũ, û, u′ are somewhere on the ray between uσ and u. From (3.31) and the Cauchy
bounds used as in (3.43) we get that

∣
∣
∣
∣
d

du
Gσσ,T (E)(u)− pN(σ, σ )e

u

∣
∣
∣
∣ ≤ C

e−β
√
NEσ �̂(E)

1 − �(u)�̂(E) , (3.53)

∣
∣
∣
∣
d

du
GσT (E)\σ,T (E)(u)

∣
∣
∣
∣ ≤ C

e−β
√
NEσ �̂(E)

1 − �(u)�̂(E) , (3.54)

∣
∣
∣
∣
d2

du2G
σ
σ,T (E)(u)

∣
∣
∣
∣ ≤ e�(u) + C

e−β
√
NEσ (�̂(E))2

(1 − �(u)�̂(E))2 (3.55)

and by Lemma 3.5,

∣
∣
∣G

σ
T (E)\σ,T (E)(u)

∣
∣
∣ ≤ C

e−β
√
NEσ

1 − �(u)�̂(E) . (3.56)

Combining these estimates, we see that indeed on |u| ≤ a/�̂(E),

|Rσ (u)| ≤ C(a)
(
e−β

√
NEσ �̂(E)

)2
(3.57)

as desired.
It remains to estimate GσT (E)\σ (u) for

(1/EτσT (E)\σ ) < �(u) < 1/�̂(E).

To do so, we rely on (3.33). We will use (3.25) to bound the numerator uniformly in the
imaginary part of u, while the denominator will provide extra decay in the imaginary
direction. Note that by (3.31),

∣
∣
∣G

σ
σ,T (E)(u)− pN(σ, σ )e

u
∣
∣
∣ ≤ e−β

√
NEσ |eu| max

σ ′∼σ
|Gσ ′

σ,T (E)(u)|

≤ e−β
√
NEσ |eu|

1 − �(u)�̂(E) . (3.58)

Therefore

|Gσσ,T (E)(u)− 1| ≥ |eu||1 − e−u| − e−β
√
NEσ

(

1 − 1

1 − �(u)�̂(E)
)

. (3.59)

Combining this estimate with (i) of Lemma 3.5, we arrive at the bound, valid for �(u) <
(1 − ε)/�̂(E) and |1 − e−u| ≥ 2ε−1e−β

√
NEσ ,

|GσT (E)\σ (u)| ≤ 2
e−β

√
NEσ

(1 − u�̂(E))|1 − e−u| . (3.60)

Combining these observations we arrive at the assertion of Theorem 3.2. ��
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Re u

Im u

Pi

-Pi

Integration contour Deformed integration contour

-Pi

Pi

Im u

Re u Re u

Deformed integration contour

-Pi

Pi

Im u

Finally we prove Corollary 3.3.

Proof of Corollary 3.3. We give only the proof of (3.15), the proof of (3.16) being com-
pletely analogous.

Note that by the Laplace inversion formula [Doe],

P[τσT (E)\σ = n] = 1

2πi

∫ iπ

−iπ
e−unGσT (E)\σ (u)du, (3.61)

where the integration is along the imaginary axis. Inserting (3.7) into (3.61),
in the first two terms the integration contour can be modified to any circle enclosing
the point 1/EτσT (E)\σ bσ , and the integral yields, by Cauchy’s theorem, the residue of

e−un aσ
1−(1−e−u)Eτσ

T (E)\σ bσ
at this point. In the integral over the remainder term Rσ (u), we

shift the contour by (1−ε)/�̂(E) along the positive real axis and use the uniform bound
(3.11) along the integration contour. This gives the claimed estimate. ��

4. The Renewal Equations

4.1. Introduction. We have now all ingredients needed to study the system of renewal
equations (1.44) established in Sect. 1.4. As usual, to solve (1.44) we pass to Laplace
transforms, solve the ensuing linear system, and then transform back. We set


∗
σ (m, u,E) ≡

∞∑

n=0

enu
σ (m, n,E) (4.1)

for u ∈ C whenever this sum converges. Let us define

F ∗
σ (m, u) ≡

∞∑

n=0

enuP[τσT (E)\σ > m+ n]. (4.2)

Then it follows from (1.44) that for any σ ∈ T (E),


∗
σ (m, u,E) = F ∗

σ (m, u)+
∑

σ ′∈T (E)\σ
Gσσ ′,T (E)\σ (u)


∗
σ ′(m, u,E). (4.3)
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Let us denote by K∗
E(u) the |T (E)| × |T (E)| matrix with elements8

(K∗
E(u))σ,σ ′ ≡

{
Gσ
σ ′,T (E)\σ (u), if σ �= σ ′

0, if σ = σ ′ . (4.4)

Then clearly the solution of Eq. (4.3) can be written as9


∗(m, u,E) =
([

I −K∗
E(u)

]−1
K∗
E(u)+ I

)
F ∗(m, u), (4.5)

where 
∗ and F ∗ denote the vectors with components 
∗
σ , and F ∗

σ .
The matrix

M∗
E(u) ≡ [I −K∗

E(u)
]−1

K∗
E(u) (4.6)

is known as the Laplace transform of the resolvent of the system of renewal equations.
Our task is to compute the inverse Laplace transform of the right hand side of (4.5).

This requires estimates in the complex u-plane. We will separate this analysis in two
steps. First, we establish a priori bounds on the norm of M∗

E in a suitable domain. Next
we will perform a suitable perturbation analysis that is valid in a small neighborhood
of u = 0 only. Then we show that the dominant part of the contribution from the La-
place-inversion formula comes from this region and is thus explicitly computed, while
the remainder is controlled by our a priori bounds.

4.2. Bounds on the resolvent. In the sequel we will always work with the matrix norm

‖K‖ ≡ max
σ∈T (E)

∑

σ ′∈T (E)
|Kσ,σ ′ |. (4.7)

Note that ‖ . ‖ is an operator norm in L∞(CM) equipped with the supremum norm,
i.e.‖KF‖∞ ≤ ‖K‖ ‖F‖∞. This norm serves our purposes, and moreover will turn out
to be particularly well suited to the matrices that we need to deal with.

We will begin by deriving estimates on the matricesK∗
E(u). It follows from the results

of Sect. 3 that

Lemma 4.1. Considered as a function C → L(CM,CM), K∗
E(u) is

(i) Periodic with period 2π in the imaginary direction.
(ii) Meromorphic in C with poles only on the positive real axis and its 2π translates.

(iii) For σ �= σ ′ ∈ T (E),

K∗
σ,σ ′(u) =

Gσ
σ ′,T (E)(u)

1 −Gσσ,T (E)(u)
. (4.8)

The following observation will be extremely useful:

8 We will often write K∗
σ,σ ′ (u) instead of (K∗

E(u))σ,σ ′ whenever no confusion is possible
9 The reason for separating the I in this representation is that the operator

[
I −K∗

E(u)
]−1

K∗
E(u) has

better decay properties at infinity than the
[
I −K∗

E(u)
]−1 itself. This is important for computing the

inverse Laplace transforms.
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Lemma 4.2. For any u ∈ C for which GσT (E)\σ,T (E)(u) is finite,

∑

σ ′∈T (E)\σ
Gσσ ′,T (E)(u) = GσT (E)\σ,T (E)(u). (4.9)

Proof. It is enough to prove (4.9) for u in the negative imaginary half plane. Now

Iτσ
T (E)\σ≤τσ

T (E)
=

∑

σ ′∈T (E)\σ
Iτσ
σ ′≤τσT (E) . (4.10)

Thus

GσT (E)\σ,T (E)(u) = Ee
uτσ
T (E)\σ Itσ

T (E)\σ≤τσ
T (E)

= E

∑

σ ′∈T (E)\σ
e
uτσ
T (E)\σ Iτσ

σ ′≤τσT (E)

=
∑

σ ′∈T (E)\σ
Ee

uτσ
σ ′ Iτσ

σ ′≤τσT (E) =
∑

σ ′∈T (E)\σ
Gσσ ′,T (E)(u). (4.11)

��
An immediate, but important consequence of Lemma 4.2 is that

‖K∗
E(0)‖ = 1. (4.12)

The first step towards control in the complex plane will be to show that ‖K∗
E(u)‖ de-

creases down from zero along the imaginary axis in the strip �(u) ∈ [−π, π ].

Lemma 4.3. Let v ∈ [−π, π ] and set

�̄ ≡ eβ
√
NuN(0)+αE. (4.13)

Recall M = |T (E)| and d = 2M . Then (for N large enough),

‖K∗
E(iv)‖ ≤ 1

√

2(1 − cos v)�̄2
(
1 −O(�̄−1)

)+ 1 − 4
M−1 (1 +O(d/N))

. (4.14)

Before proving the lemma, we will note the obvious consequence that

Corollary 4.4. Under the assumptions and notations of Lemma 4.3,

(i) If �̄|v| > 3√
M−1

, then ‖K∗
E(iv)‖ < 1.

(ii) For any 0 < ε < 1, if

2(1 − cos v) ≥ �̄−2
[

ε

1 − ε

2 − ε

1 − ε
+ 9

(m− 1)(1 − ε)

]

(1 +O(d/N)) (4.15)

then ‖K∗
E(iv)‖ ≤ 1 − ε.

(iii) Under the same assumptions as in (i),

‖M∗
E(iv)‖ ≤ 1

√
1 + 2�̄2(1 − cos v)(1 −O(�̄−1))− 1 − 4

M−1 (1 +O(d/N))
.

(4.16)
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Proof. To bound the norm of K∗
E , we use simply that

∑

σ ′∈T (E)\σ
|K∗

σ,σ ′(iv)| =
∑
σ ′∈T (E)\σ |Gσ

σ ′,T (E)(iv)|
|1 −Gσσ,T (E)(iv)|

≤
P[τσT (E)\σ ≤ τσT (E)]

|1 −Gσσ,T (E)(iv)|
. (4.17)

Thus the key point is to bound the denominator from below. Now

�Gσσ,T (E)(iv) =
∞∑

n=1

sin(vn)P[τσσ = τσT (E) = n]

= sin(v)pN(σ, σ )+
∑

σ ′ �∈T (E)
pN(σ, σ

′)
∞∑

n=1

sin(v(n+ 1))P[τσ
′

σ = τσ
′

T (E) = n]

≡ pN(σ, σ ) sin v + dσ (v), (4.18)

where

|dσ (v)| ≤ e−β
√
NEσ

∑

σ ′∼σ

1

N
P[τσ

′
σ = τσ

′
T (E)] ≤ 2

e−β
√
NEσ

|T (E)| (1 +O(|T (E)|/N)),

(4.19)

where we used the bound (2.3) from Proposition 2.1,

�
(

1 −Gσσ,T (E)(iv)
)

= pN(σ, σ )(1 − cos v)+ cσ (v), (4.20)

where

P[τσT (E)\σ = τσT (E)] ≤ cσ (v) ≤ P[τσT (E)\σ = τσT (E)] + 2
e−β

√
NEσ

|T (E)| (1 +O(|T (E)|/N)).
(4.21)

Thus we have that

|1 −Gσσ,T (E)(iv)|

≥
√

(pN(σ, σ ) sin v)2 +
(
pN(σ, σ )(1 − cos v)+ P[τσT (E)\σ = τσT (E)]

)2

−|dσ (v)| − |cσ (v)− P[τσT (E)\σ = τσT (E)]|. (4.22)

To simplify the notation, set pN ≡ pN(σ, σ ), Pσ ≡ P[τσT (E)\σ = τσT (E)]. Let

Y ≡ (pN sin v)2 + (pN(1 − cos v)+ Pσ )
2 = 2pN(1 − cos v)(pN + Pσ )+ P

2
σ .

(4.23)

Thus we have in fact that

|1 −Gσσ,T (E)(iv)| ≥
√

2pN(1 − cos v)(pN + Pσ )+ P2
σ− 4

M
e−β

√
NEσ (1+O(M/N))

(4.24)
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which together with (4.17) gives that
∑

σ ′∈T (E)\σ
|K∗

σ,σ ′(iv)|

≤ Pσ
√

2pN(1 − cos v)(pN + Pσ )+ P2
σ − 4

M
e−β

√
NEσ (1 +O(M/N))

= 1
√

2pNP
−2
σ (1 − cos v)(pN + Pσ )+ 1 − 4

M
P

−1
σ e−β

√
NEσ (1 +O(M/N))

. (4.25)

Now recall from Proposition 2.1, (iii), that

1

1 − 1
M

(1 −O(d/N)) ≤ P
−1
σ e−β

√
NEσ ≤ 1

1 − 1
M

(1 +O(d/N)). (4.26)

It follows readily that

pN + Pσ = 1 − e−β
√
NEσ + Pσ ≥ 1 − e−β

√
NEσ

M
(1 −O(d/N)) (4.27)

and hence

1 > pN(pN + Pσ ) ≥ 1 − e−β
√
NEσ (1 + 1/M)(1 +O(d/N)). (4.28)

Since by definition of T (E), minσ∈T (E)
√
NEσ ≥ uN(E), this implies

min
σ∈T (E)

pN(pN + Pσ ) ≥ 1 − �̄−1(1 + 1/M)(1 +O(d/N)) (4.29)

and

‖K∗
E(iv)‖ ≤ 1

√
�̄22(1 − cos v)(1 − �̄−1(1 + 1/M)+ 1 − 4

M−1 (1 +O(d/N))

(4.30)

which proves the lemma. ��
The proof of Corollary 4.4 is an exercise in simple algebra and is left to the reader.
Next we use these results to extend similar bounds somewhat into the positive imagi-

nary half plane. The important point permitting this is that we will need to Taylor-expand
in the real part of u only Dirichlet Green’s functions with exclusion set T (E) and these
are analytic up to �(u) ≈ 1/�̂. Let us first fix some notation.

Notation. As before the letter u ∈ C denotes a complex number. Its real and imaginary
parts will always be called w and v:

u = w + iv. (4.31)

For given u ∈ C, we will denote by z ∈ C the number

z = �̂(E)u. (4.32)
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The real and imaginary parts of z will always be called r and s:

z = r + is. (4.33)

Thus

r = �̂(E)w,

s = �̂(E)v. (4.34)

To simplify the notation the dependence on u of z (or on w, resp. v, of r , resp. s) will
never be made explicit. No confusion should arise from this as, up until Sect. 4.710, the
letters u,w, v and z, r, s will be used exclusively according to the relations specified
above.

For ready reference we make the following definitions.

Definition 4.5. Let 0 < C1, C2 < ∞, and 0 < γ < 1 be numerical constants. With the
above notation we define the sets:

D1(C1) ≡
{
u ∈ C :

√
r2 + s2 ≥ C1/

√
M
}
,

D2(C2, γ ) ≡
{

u ∈ C : 0 ≤ r < min

(
γ s2

C2
√

1 + s2
, 1 − γ

)

, v ∈ [−π, π ]

}

,

D3 ≡ {u ∈ C : −1 ≤ r < 0, |s| < 1} ,
D4 ≡ {u ∈ C : |r| < 1, |s| < 1} . (4.35)

Lemma 4.6. There exist constants 0 < C,C′ < ∞ such that, for all 0 < γ < 1 and all
u ∈ D2(C

′, γ ),

‖K∗
E(u)‖ ≤ 1 + Cγ−1r

√
1 + �̂22(1 − cos v)(1 −O(�̄−1))− 4

M−1 (1 +O(d/N))− C′γ−1r
.

(4.36)

Proof. As in the proof of Lemma 4.3, we begin by writing the analogue of (4.17) and
again we bound the numerator by the value obtained when putting its imaginary part
equal to zero. This yields

‖K∗
E(u)‖ ≤

∑
σ ′∈T (E)\σ |Gσ

σ ′,T (E)(w)|
|1 −Gσσ,T (E)(w + iv)|

=
GσT (E)\σ,T (E)(w)

|1 −Gσσ,T (E)(w + iv)| . (4.37)

We now Taylor expand both the numerator and the denominator. Note that we will only
be interested in w ≤ (1 − γ )/�̂. For the numerator we will use (3.46) together with the
bound (3.47) to write, for 0 ≤ w ≤ (1 − γ )/�̂,

GσT (E)\σ,T (E)(w) ≤ P[τσT (E)\σ ≤ τσT (E)] + Cwγ−1�̂e−β
√
NEσ . (4.38)

10 There, the letter s will retrieve the initial meaning it was given in Theorem 1.
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On the other hand, from (3.31) and the Cauchy bound we get that, again for 0 ≤ w̃ ≤
(1 − γ )/�̂,

∣
∣
∣
∣
d

dw
Gσσ,T (E)(iv + w̃)

∣
∣
∣
∣ ≤ |ew̃| + Cγ−1e−β

√
NEσ �̂(E) ≤ C′γ−1. (4.39)

This implies again

|1 −Gσσ,T (E)(iv + w)| ≥ |1 −Gσσ,T (E)(iv)| − wγ−1C′. (4.40)

As we already have bounded the first term on the right in the proof of Lemma 4.3, we
readily arrive at

∑

σ ′∈T (E)\σ
|K∗

σ,σ ′(u)|

≤ 1 + Cw�̂γ−1e−β
√
NEσP

−1
σ√

1 + 2P
−2
σ pN(1−cos v)(pN + Pσ )− 4e−β

√
NEσ

MPσ
(1 +O(M/N))−C′γ−1P

−1
σ w

.

(4.41)

Proceeding from there on exactly as in the proof of Lemma 4.3 we then get, using relation
(4.34),

∑

σ ′∈T (E)\σ
|K∗

σ,σ ′(u)|

≤ 1 + Cγ−1r
√

1 + P
−2
σ 2(1 − cos v)(1 −O(�̄−1))− 4

M−1 (1 +O(d/N))− C′γ−1r

Pσ �̂

. (4.42)

Since we need to take the maximum over all σ ∈ T (E), it is important to restrict r as a
function of v in such a way that the maximum will be taken on by the σ that maximises
Pσ . Some elementary algebra shows that this will be the case provided that

(
2(1 − cos v)�̂2(1 −O(�̄−1))

)2

1 + 2(1 − cos v)�̂2(1 −O(�̄−1))
≥
(
C′γ−1r

)2
(4.43)

or

r ≤ 2(1 − cos v)�̂2(1 −O(�̄−1))

γ−1C′√1 + 2(1 − cos v)�̂2(1 −O(�̄−1))
. (4.44)

Since this is a serious condition only if v is very small we see, using relation (4.34), that
this condition reduces to

r < min

(
γ s2

C′√1 + s2
, 1 − γ

)

. (4.45)

On this domain we can thus estimate the norm of K∗
E by

‖K∗
E(u)‖ ≤ 1 + Cγ−1r

√
1 + �̂22(1 − cos v)(1 −O(�̄−1))− 4

M−1 (1 +O(d/N))− C′γ−1r
.

(4.46)

This proves the lemma. ��
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As in the case of Lemma 4.3, we get as an immediate corollary an upper bound on
the norm of the resolvent.

Corollary 4.7. For all 0 < γ < 1 there exists a constant 0 < L < ∞ (depending on
C,C′ and γ ) such that, for all u ∈ D1(4) ∩D2(L, γ ),

‖K∗
E(u)‖ < 1 (4.47)

and

‖M∗
E(u)‖

≤ 1+Cγ−1r
√

1 + �̂22(1−cos v)(1−O(�̄−1))−1− 4
M−1 (1+O(d/N))−(C+C′)γ−1r

.

(4.48)

Finally we will need an estimate on ‖M∗
E(u)‖ in the case when |u| is very small and

w ≤ 0 that shows that there, the negative real part helps to depress ‖K∗
E(u)‖ < 1 down

from one.

Lemma 4.8. For M large enough,

(i) for all u ∈ D3,

‖K∗
E(u)‖ ≤ 1√

1 + r2 + s2 − 5
M

, (4.49)

(ii) for all u ∈ D1(4) ∩D3, ‖K∗
E(u)‖ < 1 and

‖M∗
E(u)‖ ≤ 1√

1 + r2 + s2 − 1 − 5
M

. (4.50)

Proof. The proof of this estimate goes quite along the lines of the proof of the previous
lemmas. However, to simplify things, we bound the Green function in the numerator of
(4.37) by its value at zero and, instead of using (4.40) in the denominator, we go back
to the estimates (4.18) and (4.20) which we modify slightly to yield, for w ≤ 0,

�Gσσ,T (E)(iv + w) =
∞∑

n=1

enw sin(vn)P[τσσ = τσT (E) = n]

= ew sin(v)pN(σ, σ )

+
∑

σ ′ �∈T (E)
pN(σ, σ

′)
∞∑

n=1

ewn sin(v(n+ 1))P[τσ
′

σ = τσ
′

T (E) = n]

≤ pN(σ, σ )e
w sin v + dσ (v) (4.51)

with dσ (v) from (4.18). Similarly,

�
(

1 −Gσσ,T (E)(iv + w)
)

= pN(σ, σ )(1 − ew cos v)+ cσ (v) (4.52)

with cσ (v) from (4.20). On the other hand
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|Pσ + pN(1 − eu)|2 = P
2
σ + 2pN(1 − cos v)(pN + Pσ )

−2 cos vpN(e
w − 1)(pN + Pσ )+ p2

N(e
2w − 1).

(4.53)

For w small, we can expand ew to second order and, using that w ≤ 0, we get

|Pσ + pN(1 − eu)|2
= P

2
σ + 2pN(1 − cos v)(pN + Pσ )− 2wpN [pN − cos v(pN + Pσ )]

+w2pN [2pN − cos v(pN + Pσ )] +O
(
w3)

= P
2
σ + 2pN(1 − cos v)(pN + Pσ )(1 − w)− 2wpN(1 − pN)

+w2pN [2pN − cos v(pN + Pσ )] +O
(
w3)

≥ P
2
σ + v2 + w2 +O

(
w3). (4.54)

Thus

∑

σ ′∈T (E)\σ
|K∗

σ,σ ′(u)| ≤ 1
√

1 + P
−2
σ �̂2(s2 + r2)− 5

M

, (4.55)

and since this is clearly monotone in Pσ , it follows that

‖K∗
E(u)‖ ≤ 1√

1 + s2 + w2 − 5
M

(4.56)

and hence, for u ∈ D1(4), ‖K∗
E(u)‖ < 1 and

‖M∗
E(u)‖ ≤ 1√

1 + s2 + w2 − 1 − 5
M

. (4.57)

��

4.3. Perturbative estimates for small u.

Notation. In this sub-section we will systematically write T for T (E).

The a priori bounds obtained in the last subsection will suffice to show that the con-
tributions from u away from zero in the Laplace inversion formula are sub-dominant.
In the neighborhood of zero we have to proceed more carefully and extract the domi-
nant contribution to the resolvent, while estimating the remainders. This will be done
by decomposing K∗

E(u) in a suitable way, the idea being that the leading term should
allow exact computations; in fact, we will want this term to be a matrix with constant
columns. To this end note that for σ �= σ ′, by Taylor’s formula,

K∗
σ,σ ′(u) = 1

1 −Gσσ,T (u)

(

Gσσ ′,T (0)+ u
d

du
Gσσ ′,T (0)+ u2

2

d2

du2G
σ
σ ′,T (ũ)

)

= 1

1 −Gσσ,T (u)

(

P[τσσ ′ ≤ τσT ] + uEτσσ ′I{τσ
σ ′≤τσT } + u2

2

d2

du2G
σ
σ ′,T (ũ)

)

,

(4.58)



Aging in the REM. Part 2 29

where ũ is on the ray between 0 and u. The idea is of course that since u is small, the qua-
dratic term is a small perturbation11 while the constant and linear terms are essentially
independent of σ ′, the deviations being treatable as perturbations as well.

Let us first establish a bound on the second order contribution. The notation and defini-
tions of the present are the same as in the previous one (recall in particular Definition 4.5).

Lemma 4.9. Denote by K∗(2)
E the matrix with entries

K
∗,(2)
σ,σ ′ (u) =






1
2u

2 d2

du2 G
σ
σ ′,T (ũ)

1−Gσσ,T (u) , if σ �= σ ′

0, if σ = σ ′
. (4.59)

For 0 < γ < 1, let the constant L be chosen such that
{
u ∈ C | r ≤ s2/4

}
⊆ D2(L, γ ) ∩D4. (4.60)

Then, there exists a constant C > 0 such that for all for u ∈ D2(L, γ ) ∩ D4 and N
large enough,

‖K∗(2)
E (u)‖ ≤ γ−2C(s2 + r2)

√
1 + (s2 + r2)/2 − 5/M

. (4.61)

Remark. The assumption (4.60) is made for convenience only as it allows to simplify
the expressions of our estimates.

Remark. Note also that the bound (4.61) simply behaves, for small �̂u, like γ−2C(s2 +
r2).

Proof. To bound the denominator we proceed as in the proofs of Lemmas 4.6 and 4.8
with the difference that, for r > 0, the bound 4.54 becomes, using that r ≤ s2/4,

|Pσ + pN(1 − eu)|2 ≥ P
2
σ + (v2 + w2)/2 +O(w3). (4.62)

For the numerator we use that

∑

σ ′∈T \σ

∣
∣
∣
∣
d2

du2G
σ
σ ′,T (ũ)

∣
∣
∣
∣ ≤

∑

σ ′∈T \σ

d2

du2G
σ
σ ′,T (�ũ) = d2

du2G
σ
T \σ,T (�ũ) (4.63)

and, since �ũ ≤ (1 − γ )/�̂, bound the last quantity in the r.h.s. proceeding as in the
proof of Proposition 3.6 (see the treatment of the term (II) therein). ��

What remains ofK∗
E after subtraction ofK∗(2)

E is almost of the desired form (i.e. has
almost constant columns); however, a few cosmetic changes need to be made: first, the
matrix elements

K
∗(1)
σ,σ ′ (u) ≡ 1

1 −Gσσ,T (u)
P
[
τσσ ′ ≤ τσT

] (
1 + uE

[
τσσ ′ |τσσ ′ ≤ τσT

])
, σ �= σ ′ (4.64)

have to be replaced by their leading, σ ′-independent part

11 It will become clear only later why we expand to second order and are not content with the first order
as before.
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K
∗(0)
σ,σ ′ (u) ≡ 1

1 −Gσσ,T (u)

(
1
M

P[τσT \σ < τσT ]
(

1 + uE[τσT \σ |τσT \σ = τσT ]
))
, σ �= σ ′.

(4.65)

As shown in the next lemma, this replacement can be done at the cost of error terms of
order at most O(1/N).

Lemma 4.10. Denote by K∗(0)
E and K∗(1)

E the matrix with off-diagonal entries given
respectively by (4.65) and (4.64) and zero diagonals. Then, under the assumptions and
with the notation of Lemma 4.9 and Proposition 2.2 we have, for N large enough,

‖K∗(0)(u)−K∗(1)(u)‖ ≤ 1 + 3
√
s2 + r2

√
1 + (s2 + r2)/2 − 5/M

O(1/N). (4.66)

Second, since the matrix K∗(0)(u) has zero diagonal, we still have to compare it to
the matrix K∗(0) with entries

K∗(0)
σ,σ ′(u)≡ 1

1 −Gσσ,T (u)

(
1
M

P[τσT \σ < τσT ]
(

1 + uE[τσT \σ |τσT \σ = τσT ]
))
, ∀σ, σ ′ ∈ T .

(4.67)

This involves controlling the norm of the diagonal matrix K∗(0)(u)−K∗(0)(u):

Lemma 4.11. Let K∗(0) be the matrix defined in (4.67). Under the assumptions and with
the notation of Lemma 4.10 we have, for N large enough,

‖K∗(0)(u)−K∗(0)(u)‖ ≤ 1 + √
s2 + r2

√
1 + (s2 + r2)/2 − 5/M

O(1/(M − 1)). (4.68)

Proof of Lemma 4.10. For σ, σ ′ ∈ T , σ �= σ ′, let κσ,σ ′(u) be defined through

K
∗(0)
σ,σ ′ (u)−K

∗(1)
σ,σ ′ (u) = κσ,σ ′(u)

1 −Gσσ,T (u)
. (4.69)

Since the denominator in (4.69) has already been dealt with in Lemma 4.9, what we need
is an upper bound on |κσ,σ ′(u)|.Appropriately sorting out the different terms contributing
to κσ,σ ′(u) we may write,

|κσ,σ ′(u)| ≤
∣
∣
∣
∣P[τσσ ′ ≤ τσT ] − 1

M
e−β

√
NEσ

∣
∣
∣
∣

(
1 + |u|E[τσT \σ |τσT \σ = τσT ]

)

+|u|P[τσσ ′ ≤ τσT ]
∣
∣
∣E[τσσ ′ | τσσ ′ ≤ τσT ] − E[τσT \σ | τσT \σ = τσT ]

∣
∣
∣ . (4.70)

Plugging in the estimates of Proposition 2.1, ii),

|κσ,σ ′(u)| ≤ e−β
√
NEσ

M

[(
1 + |u|E[τσT \σ |τσT \σ = τσT ]

)
O(1/N)

+ |u|
∣
∣
∣E[τσσ ′ | τσσ ′ ≤ τσT ] − E[τσT \σ | τσT \σ = τσT ]

∣
∣
∣ (1 +O(1/N))

]

,

(4.71)
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and we are left to bound the expected transition time E[τσT \σ |τσT \σ = τσT ], together with

the difference
∣
∣
∣E[τσ

σ ′ | τσ
σ ′ ≤ τσT ] − E[τσT \σ | τσT \σ = τσT ]

∣
∣
∣. To deal with the latter, first

observe that differentiating the renewal equation Gσ
σ ′,T \σ (u) = Gσ

σ ′,T (u)
1−Gσσ,T (u) , we have

d

du
Gσσ ′,T (0) = (1 − P[τσσ ≤ τσT ])Eτσσ ′I{τσ

σ ′≤τσT \σ } − P[τσσ ′ ≤ τσT \σ ]Eτσσ I{τσσ ≤τσT }

= P[τσσ ′ ≤ τσT ]

(

E[τσσ ′ | τσσ ′ ≤ τσT \σ ] − Eτσσ I{τσσ ≤τσT }
1 − P[τσσ ≤ τσT ]

)

(4.72)

implying that

E
[
τσσ ′ | τσσ ′ ≤ τσT

] = E[τσσ ′ | τσσ ′ ≤ τσT \σ ] − Eτσσ I{τσσ ≤τσT }
1 − P[τσσ ≤ τσT ]

(4.73)

and, since the last term in the r.h.s. is σ ′-independent, we can express our conditional
expectation in the following, remarkably useful form:

E
[
τσσ ′ | τσσ ′ ≤ τσT

] = 1

|T \ σ |
∑

σ ′∈T \σ
E
[
τσσ ′ | τσσ ′ ≤ τσT

]

+
{

E[τσσ ′ | τσσ ′ ≤ τσT \σ ] − 1

|T \ σ |
∑

σ ′∈T \σ
E[τσσ ′ | τσσ ′ ≤ τσT \σ ]

}

. (4.74)

Next observe that by (4.9),
∑
σ ′∈T \σ P[τσ

σ ′ ≤ τσT ] = P[τσT \σ ≤ τσT ], as well as

∑

σ ′∈T \σ
Eτσσ ′I{τσ

σ ′≤τσT } = EτσT \σ I{τσT \σ≤τσT } (4.75)

hold ((4.75) is obtained by differentiating (4.9) and setting u = 0). On the other hand, us-
ing (2.4) from Proposition 2.1, the first term in the r.h.s of (4.74) may thus be rewritten as

1

|T \ σ |
∑

σ ′∈T \σ
E
[
τσσ ′ | τσσ ′ ≤ τσT

]

=
∑

σ ′∈T \σ

Eτσ
σ ′I{τσ

σ ′≤τσT }
P[τσT \σ ≤ τσT ]




1

|T \ σ |
∑

σ ′′∈T \σ

P[τσ
σ ′′ ≤ τσT ]

P[τσ
σ ′ ≤ τσT ]





= E[τσT \σ | τσT \σ = τσT ](1 +O(1/N)). (4.76)

Since the term in braces in the last line of (4.74) was estimated in Corollary 2.3, inserting
(2.13) and (4.76) in (4.74), we obtain that, under the assumptions and with the notation
of Proposition 2.2,

∣
∣
∣E
[
τσσ ′ | τσσ ′ ≤ τσT

]− E[τσT \σ | τσT \σ = τσT ]
∣
∣
∣

≤ O(1/N)
(
E[τσT \σ | τσT \σ = τσT ] + (1 − 1

M
)−1Wβ,N,T

)
. (4.77)
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Therefore, collecting (4.77) and (4.71),

|κσ,σ ′(u)| ≤ e−β
√
NEσ

M

[

1 + |u|
(

2E[τσT \σ |τσT \σ = τσT ]

+ (1 − 1
M
)−1Wβ,N,T

)]

O(1/N), (4.78)

and we are left to bound the term E[τσT \σ |τσT \σ = τσT ] from above. To do so, we proceed
as in (4.72), (4.73), but this time using (3.36) and the fact that Eτσσ I{τσσ ≤τσT } ≥ P[τσσ =
1] = 1 − e−β

√
NEσ , we obtain that

E[τσT \σ |τσT \σ = τσT ] ≤ E[τσT \σ ] − 1

P(τσT \σ < τσσ )
+ 1

eβ
√
NEσP(τσT \σ < τσσ )

≤ 1

1 − 1
M

(
1 + Wβ,N,T

)
(1 +O(1/N)), (4.79)

where the second line follows from the bound (2.14) of Corollary 2.3 together with the
estimate (2.6) of Proposition 2.1. Inserting this bound in (4.78) yields,

|κσ,σ ′(u)| ≤ e−β
√
NEσ

M

[

1 + 3|u|(1 − 1
M
)−1 (1 + Wβ,N,T

)
]

O(1/N). (4.80)

Thus

‖K∗(0)(u)−K∗(1)(u)‖ ≤ max
σ∈T

∑
σ ′∈T \σ |κσ,σ ′(u)|
|1 −Gσσ,T (u)|

≤ max
σ∈T

(1 − 1
M
)e−β

√
NEσ

|1 −Gσσ,T (u)|
[

1 + 3|u|(1 − 1
M
)−1 (1 + Wβ,N,T

)
]

O(1/N), (4.81)

and observing that, by assertion (v) of Proposition 2.1,

(1 − 1
M
)e−β

√
NEσ = GσT \σ,T (0)(1 +O(1/N)) (4.82)

we finally arrive at

‖K∗(0)(u)−K∗(1)(u)‖ ≤ max
σ∈T

GσT \σ,T (0)
|1 −Gσσ,T (u)|

[

1 + 3|u|(1 − 1
M
)−1 (1 + Wβ,N,T

)
]

O(1/N). (4.83)

From there on, the proof proceeds exactly as the proofs of Lemma 4.6, 4.8 and 4.9,
yielding

‖K∗(0)(u)−K∗(1)(u)‖ ≤ 1 + 3
√
s2 + r2(1 − 1

M
)−1
(
1 + Wβ,N,T

)
�̂−1

√
1 + (s2 + r2)/2 − 5/M

O(1/N)

(4.84)

which, since (1− 1
M
)−1
(
1 + Wβ,N,T

)
�̂−1 ≤ 1, gives (4.68), proving Lemma 4.10. ��
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Proof of Lemma 4.11. By definition of K∗(0)(u) and K∗(0)(u),

‖K∗(0)(u)−K∗(0)(u)‖ = max
σ∈T

|K∗(0)
σ,σ (u)|

≤ 1

M − 1
max
σ∈T

(1 − 1
M
)−1e−β

√
NEσ

|1 −Gσσ,T (u)|
(

1 + |u|E[τσT \σ |τσT \σ = τσT ]
)
. (4.85)

Equation (4.79) then yields the bound

‖K∗(0)(u)−K∗(0)(u)‖ ≤ 1

M − 1
max
σ∈T

(1 − 1
M
)e−β

√
NEσ

|1 −Gσσ,T (u)|
×
[

1 + |u|(1 − 1
M
)−1 (1 + Wβ,N,T

)
]

O(1/N) (4.86)

which, up to some constants, is identical to that of (4.81). From there on the proof follows
that of Lemma 4.10. ��

Let us introduce the decomposition

K∗(u) ≡ K∗(0)(u)+ K∗(1)(u) (4.87)

and note that K∗(1)(u) can be written in the form

K∗(1)(u) ≡ (K∗(0)(u)− K∗(0)(u))+ (K∗(1)(u)−K∗(0)(u))+K∗(2)(u). (4.88)

The following corollary then is an immediate consequence of the previous three lemmata.

Corollary 4.12. Under the assumptions and with the notation of Lemma 4.9 and Lemma
4.10 we have, for N large enough,

‖K∗(1)(u)‖ ≤ γ−2C(s2 + r2)+ (1 + 3
√
s2 + r2)max (O(1/(M − 1)),O(1/N))

√
1 + (s2 + r2)/2 − 5/M

.

(4.89)

The leading contribution toK∗(u) thus comes from the matrix K∗(0)(u)whose spec-
trum is easily analysed. In particular, K∗(0)(u) has a unique non zero eigenvalue of
algebraic multiplicity one, denoted by λ(u), and given by:

λ(u) ≡
∑

σ∈T
K∗(0)
σ,σ ′(u). (4.90)

The corresponding left eigenvector is proportional to (1, 1, . . . , 1). Similarly, defining

M∗(0)(u) ≡ [I − K∗(0)(u)]−1K∗(0)(u) (4.91)

we decompose the Laplace transform of the resolvent (defined in 4.6) into

M∗(u) ≡ M∗(0)(u)+M∗(1)(u). (4.92)

It obviously follows from the previous results thatM∗(0)(u) has two eigenvalues, 0 and
λ(u)[1−λ(u)]−1, the latter having algebraic multiplicity one. We will have to show that
the matrix M∗(1)(u) has small norm, and this smallness should be inferred from that of
‖K∗(1)(u)‖. To make this explicit we want to use the following result:



34 G. Ben Arous, A. Bovier, V. Gayrard

Lemma 4.13. Set

R(u) ≡ [I − K∗(0)(u)]−1,

ρ(u) ≡ max
(
|1 − λ(u)|−1, 1

)
. (4.93)

Then,

M∗(1)(u) = R(u)K∗(1)(u)R(u)
1

I − R(u)K∗(1)(u)
(4.94)

and, if ‖R(u)K∗(1)(u)‖ < 1,

‖M∗(1)(u)‖ ≤ ‖K∗(1)(u)‖ρ(u)2
1 − ‖K∗(1)(u)‖ρ(u) . (4.95)

Proof. Observe that using the decomposition (4.87), [I − K∗(u)]−1 can be written in
the form

1

I −K∗(u)
= R(u)+ R(u)K∗(1)(u)

1

I −K∗(u)
. (4.96)

Thus

M∗(u) = M∗(0)(u)+ R(u)K∗(1)(u)+ R(u)K∗(1)(u)
1

I −K∗(u)
K∗(u)

= M∗(0)(u)+ R(u)K∗(1)(u)
1

I −K∗(u)
. (4.97)

Equation (4.94) then results from (4.97) together with the identity

1

I −K∗(u)
= R(u)

1

I − R(u)K∗(1)(u)
(4.98)

We now turn to the proof of (4.96). It follows from the spectral properties of K∗(0)(u) that

‖[I − K∗(0)(u)]−1‖ = max
(
|1 − λ(u)|−1, 1

)
≡ ρ(u). (4.99)

Equation (4.94) then yields the bound

‖M∗(1)(u)‖ ≤ ρ(u)2‖K∗(1)(u)‖ ‖[I − R(u)K∗(1)(u)]−1‖ (4.100)

and (4.95) follows from the fact that, if ‖R(u)K∗(1)(u)‖ < 1, then

‖[I − R(u)K∗(1)(u)]−1‖ ≤ [1 − ‖R(u)K∗(1)(u)‖]−1 ≤ [1 − ρ(u)‖K∗(1)(u)‖]−1.

(4.101)

The lemma is proven. ��
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At this stage we see that to fully control the behavior of bothM∗(0)(u) andM∗(1)(u)
in a small neighborhood of the origin requires a precise control of 1−λ(u). Observe that

1 − λ(u) = 1

|T |
∑

σ∈T

[

1 −
GσT \σ,T (0)

1 −Gσσ,T (u)

(
1 + uE[τσT \σ |τσT \σ = τσT ]

)
]

(4.102)

so that 1 − λ(u) takes the form of a sum over σ . The evaluation of such sums is a rather
involved question whose treatment is the object of the next subsection. The analysis of
M∗(0)(u) and M∗(1)(u) will then be brought to a close in Sect. 4.5. As for the present
section, we conclude it with the analysis of the summands of (4.102).

Lemma 4.14. Recall that u = z/�̂(E) and set

zσ ≡ (1 − 1
M

)
e−β

√
NEσ �̂(E). (4.103)

If u belongs to the set

Dδ ≡
{
u ∈ C | r < s2/4, |z| ≤ δ

}
, 0 < δ < 1, (4.104)

then, for N large enough,
∣
∣
∣
∣
∣
1 −

GσT \σ,T (0)
1 −Gσσ,T (u)

(
1 + uE[τσT \σ |τσT \σ = τσT ]

)
− z

z− zσ

∣
∣
∣
∣
∣
≤ C(δ)|z| (4.105)

for some constant 0 < C(δ) < ∞ that only depends on δ.

Proof. Let us write

1 −
GσT \σ,T (0)

1 −Gσσ,T (u)

(
1 + uE[τσT \σ |τσT \σ = τσT ]

)

=
(

1 −
GσT \σ,T (0)

1 −Gσσ,T (u)

)
(

1 + uE[τσT \σ |τσT \σ = τσT ]
)

− uE[τσT \σ |τσT \σ = τσT ].

(4.106)

Recall that we denote by uσ the smallest real number that solves the equation
Gσσ,T (u) = 1. We will first look at the term in round brackets:

1 −
GσT \σ,T (0)

1 −Gσσ,T (u)
= Gσσ,T (0)−Gσσ,T (u)

1 −Gσσ,T (u)

= − Gσσ,T (0)−Gσσ,T (u)

(u− uσ )
d
du
Gσσ,T (uσ )

+(Gσσ,T (0)−Gσσ,T (u))

(
1

1 −Gσσ,T (u)
+ 1

(u− uσ )
d
du
Gσσ,T (uσ )

)

= u

u− uσ
− Gσσ,T (0)−Gσσ,T (u)+u d

du
Gσσ,T (uσ )

(u− uσ )
d
du
Gσσ,T (uσ)

+
(Gσσ,T (0)−Gσσ,T (u))

(
(u− uσ )

d
du
Gσσ,T (uσ )+1 −Gσσ,T (u)

)

(1 −Gσσ,T (u))(u− uσ )
d
du
Gσσ,T (uσ )

= u

u− uσ
(1 + R̃σ (u))+ R̂σ (u), (4.107)
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R̃σ and R̂σ being defined through

R̃σ (u) ≡ (ũ− uσ )
d2

du2G
σ
σ,T (û)

d
du
Gσσ,T (uσ )

,

R̂σ (u) ≡ u
d

du
Gσσ,T (ũ)

1
2
d2

du2G
σ
σ,T (ǔ)

d
du
Gσσ,T (u

′) d
du
Gσσ,T (uσ )

, (4.108)

where ũ is on the ray between 0 and u, û on the ray between ũ and uσ , and both ǔ and
u′ are on the ray between u and uσ , and u′.

The various first and second derivatives entering the expressions of R̂σ (u) and
R̃σ (u) can be bounded with the help of (3.53) and (3.55). We then get that on the
disk |u| ≤ δ/�̂(E), 0 < δ < 1,

|R̂σ (u)| ≤ c(δ)zσ |z|, (4.109)

where zσ is defined in (4.103) and 0 < c(δ) < ∞ only depends on δ. Similarly, using
that ũ is on the ray between 0 and u,

|R̃σ (u)| ≤ c′(δ)zσ (|z| + |�̂(E)uσ |) (4.110)

for some 0 < c′(δ) < ∞. Recall from Sect. 3.2 (formula (3.49)) that uσ ≈ 1
EτσT \σ

;

however, inspecting the proof of Proposition 3.6 (see also (2.9)) an alternative represen-
tation is

uσ = GσT \σ,T (0)(1 +O(e−β
√
NEσ �̂(E))), (4.111)

and this will be even more convenient here as, using (4.82), we then have

�̂(E)uσ = zσ (1 +O(zσ )). (4.112)

The bound (4.110) thus becomes

|R̃σ (u)| ≤ c′′(δ)zσ (|z| + zσ ). (4.113)

We now come to the main contribution to the r.h.s. of (4.107), namely to the term
u/(u− uσ ). Using (4.112) we can write

u

u− uσ
= z

z− zσ
+ Rσ (z), (4.114)

where

Rσ (z) ≡ z(uσ �̂(E)− zσ )

(z− zσ )(z− uσ �̂(E))
= zO(z2

σ )

(z− zσ )(z− zσ (1 +O(zσ )))
. (4.115)

To bound this term we use that on the set
{
z ∈ C | r < s2/4

}
:

|z− zσ | ≥ zσ (4.116)

and

|z− zσ (1 +O(zσ ))| ≥
{
zσ (1 +O(zσ )), if zσ (1 +O(zσ )) ≤ 2
2
√
zσ (1 +O(zσ ))− 1, otherwise

. (4.117)
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Therefore, for z ∈ Dδ ,

|Rσ (z)| ≤ |z|O(z2
σ )

|z− zσ | |z− zσ (1 +O(zσ ))| ≤ c|z| (4.118)

for some constant c > 0.
Inserting (4.114) in (4.107), and plugging the resulting expression in (4.106), we may

now write

1 −
GσT \σ,T (0)

1 −Gσσ,T (u)

(
1 + uE[τσT \σ |τσT \σ = τσT ]

)
= I 0

σ (u)+ I 1
σ (u), (4.119)

where

I 0
σ (u) ≡

(
z

z− zσ
+ Rσ (z)

)

(1 + R̃σ (u))+ R̂σ (u),

I 1
σ (u) ≡ z

E[τσT \σ |τσT \σ = τσT ]

�̂(E)

[(
z

z− zσ
+ Rσ (z)

)

(1 + R̃σ (u))+ R̂σ (u)− 1

]

.

(4.120)

Assume that z ∈ Dδ . Since E[τσT \σ |τσT \σ = τσT ]�̂(E)−1 ≤ 1, it readily follows from the
estimates (4.109), (4.113), (4.118), and the bound

∣
∣
∣
∣

z

z− zσ

∣
∣
∣
∣ =

∣
∣
∣
∣1 + zσ

z− zσ

∣
∣
∣
∣ ≤ 2 (4.121)

which, by (4.116), holds for all z ∈ Dδ , that

|I 1
σ (u)| ≤ C′(δ)|z| (4.122)

for some constant C′(δ) > 0. To treat the term I 0
σ (u) note that using in turn (4.113) and

(4.116),

∣
∣
∣
∣

z

z− zσ
R̃σ (u)

∣
∣
∣
∣ ≤ c′′(δ)

zσ |z|
|z− zσ | (|z| + zσ ) ≤ c′′(δ)|z|(|z| + zσ ). (4.123)

Therefore,

∣
∣
∣
∣I

0
σ (u)− z

z− zσ

∣
∣
∣
∣ ≤ C′′(δ)|z| (4.124)

for some constant C′′(δ) > 0. Combining (4.119) together with (4.123) and (4.124)
yields (4.105). This concludes the proof of Lemma 4.14. ��
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4.4. Poisson convergence. Finally we need to control the convergence of various inte-
gral functions of the variables zσ . We will do this in a general setting first and then apply
this to the various occurrences later on.

Note first that by (4.103) and (3.2),

zσ = (1 − 1/M)e−β
√
NEσ �̂(E)

= e−α(u
−1
N (Eσ )−E)

(

1 + e−E

|T (E)|(α − 1)

(

1 + VN,EeE/2 α − 1√
2α − 1

))

(1+O(1/N))

≡ 1

eα(u
−1
N (Eσ )−E)τE,N

(4.125)

only depends on σ through u−1
N (Eσ ). As has been explained in Sect. 1, the point process

N ∗
N,E ≡

∑

σ∈{−1,1}N
δexp{α(−E+u−1

N (Eσ ))} =
∑

σ∈{−1,1}N
δ1/(zσ τN,E) (4.126)

converges weakly to the Poisson point process N ∗
E on [1,∞) with intensity measure

α−1eEx−1−1/αdx.
We will now show how to make use of the convergence of our point processes to

Poisson point processes in the analysis of the asymptotic behavior of our functions as
both N and E tend to infinity. As a first example we will explain how to control the
behavior of the random coefficients τN,E .

Lemma 4.15. Set τ∞ ≡ α−1
α

. Then,

lim
E↓−∞

lim
N↑∞

τN,E = τ∞, in Probability. (4.127)

Proof. τN,E depends on two random variables, VN,E (defined in Eq. (3.2) of [BBG1])
and |T (E)|. Let us first look at VN,E . We want to show that VN,EeE/2 tends to zero. By
Chebychev’s inequality of order four, we have that

P[|VN,Ee+E/2| > ε] ≤ EV4
N,E

ε4e−2E . (4.128)

But (see [BKL], Lemma 3.3, where however the normalisation of VN is different) the
moments of the random variable VN,E converge, as N ↑ ∞, and in particular

lim
N↑∞

EV4
N,E = (2α − 1)2

4α − 1
e−E + 3. (4.129)

Therefore, there exists N0, such that for all N > N0, and for −E large enough,

P[|VN,EeE/2| > ε] ≤ 4eE

ε4 . (4.130)

Next we note that |T (E)| = ∫∞
E

NN(dx) converges, as N ↑ ∞, to a Poisson random
variable with parameter eE . In particular,
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lim
N↑∞

P[|eE |T (E)| − 1| > ε] =
e−E(1−ε)∑

n=0

e−nE

n!
e−e

−E

+
∞∑

n=e−E(1+ε)

e−nE

n!
e−e

−E ≤ Ce−Ee−ε
2e−E . (4.131)

Combining these two observations proves the lemma. ��
Remark. Note that we actually prove that τN,E converges, as N ↑ ∞, to a random
variable τE which in turn, as E ↓ −∞, converges to a constant. This latter convergence
can easily be shown to take place almost surely. However, it is not correct that the joint
convergence takes place almost surely. It may be possible to show that almost sure con-
vergence holds along certain diagonal limits N ↑ ∞ with E = EN depending on N in
a suitable way. Due to the generally rather slow convergence of extremal distributions,
proving such a statement rigorously would require a considerable extra effort and is not
guaranteed to succeed.

The next lemma is an immediate application of the weak convergence of the point
process N ∗

N,E :

Lemma 4.16. Let g be a bounded continuous function on R
+, such that∣

∣
∣
∫∞

0
dx

x1+1/α g(x)

∣
∣
∣ < +∞, and let XN be a family of positive random variables that

converge in distribution to the positive random variable X. Then for any b > 0,

(i)
∫∞
b

N ∗
N,E(dx)g(xXN) converges, as N ↑ ∞, to the random variable

∫∞
b

N ∗
E(dx)g(xX).

(ii) If XE is a family of random variables such that, as E ↓ −∞, XE → a ∈ R
+

almost surely, then

lim
E↓−∞

e+E
∫ ∞

1
N ∗
E(dx)g(xXE) = α−1

∫ ∞

1

dx

x1+1/α g(xa), a.s. (4.132)

(iii) If g is a complex valued function on C, and if for some domain B ⊂ C, for all
x ∈ R

+, z ∈ B, g(zx) is bounded, and for all z ∈ B,
∣
∣
∣
∣

∫ ∞

0

dx

x1+1/α g(zx)

∣
∣
∣
∣ < ∞ (4.133)

holds, then

lim
E↓−∞

P

[

lim
N↑∞

sup
z∈B

∣
∣
∣
∣e
E

∫ ∞

1
N ∗
E(dx)g(zxXE)− (az)1/αα−1

∫ ∞

az

dx

x1+1/α g(x)

∣
∣
∣
∣ > ε

]

= 0. (4.134)

Proof. (i) is a standard result that follow from the equivalence of convergence in dis-
tribution of a r.v. and almost sure convergence of a sequence of r.v. having the same
distribution. To prove (ii), recall that by definition of the Poisson process N ∗

E ,

∫ ∞

1
N ∗
E(dx)g(x) =

nE∑

i=1

g(xi), (4.135)
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where nE is a Poisson random variable with mean eE , and xi, i ∈ N are i.i.d. random
variables such that

P [xi ≤ a] ≡ α−1
∫ a

1

dx

x1+1/α . (4.136)

Note that first by continuity g(xXE)− g(xa) converge to zero and since g is integrable
w.r.t. the law of xi , g(xXE)− g(xa) ↓ 0 as a random variable. On the other hand, it fol-
lows from our assumptions that g(xi) are bounded random variables. In particular, their
moment generating functions Eeλg(xi ) are finite for all λ. Therefore standard arguments
imply that there exists a constant c such that

P

[

|n−1
E

nE∑

i=1

(g(xi)− Eg(xi))| > ε

]

≤ 2EnE exp

(

− ε2nE

cvar2(g)

)

, (4.137)

where EnE denotes expectation with respect to the Poisson variable nE and

var2(g) ≡ α−1
∫ ∞

1

dx

x1+1/α

(

g(x)− α−1
∫ ∞

1

dx

x1+1/α g(x)

)2

(4.138)

is, by our assumptions on g, finite. Together with the exponential estimate on the con-
centration of the Poisson variable nE (4.131), this yields

P

[∣
∣
∣
∣n

−1
E

∫ ∞

1
N ∗
E(dx)g(x)− α−1

∫ ∞

1

dx

x1+1/α g(x)

∣
∣
∣
∣ ≥ ε

]

≤ 2 exp

(

− ε2e−E

2cvar2(g)

)

+ Ce−Ee−e
−E/4

. (4.139)

From this (ii) follows immediately. To prove (iii), note that (ii) also holds if g takes
complex values by simply considering real and imaginary parts separately. By a simple
change of variables we have, for s ≤ 1,

Eg(s·) = s1/αα−1
∫ ∞

s

dx

x1+1/α g(x) (4.140)

and

var2(g(s·)) = s1/αα−1
∫ ∞

s

dx

x1+1/α

(

g(x)− s1/αα−1
∫ ∞

s

dx

x1+1/α g(x)

)2

. (4.141)

If (4.133) holds, this implies that Eg(s·) ≤ Cs1/α and var2(g(s·)) ≤ Cs1/α for small s.
Thus, for s small, we get from (4.139) that for some finite constant Cg depending on g,

P

[∣
∣
∣
∣e
E

∫ ∞

1
N ∗
E(dx)g(sx)− α−1

∫ ∞

1
g(sx)

∣
∣
∣
∣ ≥ s1/(2α)ε

]

≤ 2 exp

(

−ε
2e−E

2Cg

)

+ Ce−Ee−e
−E/4

. (4.142)

Remark. This means that fluctuations are at most of order s1/(2α)eE/2 which is less than
the mean as long as s > eE . This should be taken as a sign that on time scales larger
than e−E self-averaging no longer takes place.
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The uniformity of the convergence in z claimed under (iii) follows from the expo-
nential estimate (4.142) and the continuity of g by standard arguments. This concludes
the proof of the lemma. ��

As the first and main application of this lemma we obtain the

Corollary 4.17. Uniformly in �(z) < max(|�(z)|, 1/2),

lim
E↓−∞

lim
N↑∞

1

|T (E)|
∑

σ∈T (E)

z

z− zσ

= α−1
∫ ∞

1

dx

x1+1/α

xzτ∞
xzτ∞ − 1

, in Probability. (4.143)

Moreover, on the same set,

α−1
∫ ∞

1

dx

x1+1/α

xzτ∞
xzτ∞ − 1

= (−zτ∞)1/απcosec (π/α)+O(|z|) (4.144)

for |z| small.

Proof. To get (4.143), just check that the hypotheses of Lemma 4.16 are satisfied. To
prove (4.144), note first that

∣
∣
∣
∣

∫ 1

0

dx

x1+1/α

xzτ∞
xzτ∞ − 1

∣
∣
∣
∣ ≤

∫ 1

0

dx

x1+1/α

|z|τ∞x√
2

= |z|τ∞√
2

1

1 − 1/α
, (4.145)

where we used that |(a + ib − 1)|−1 ≤ [(a − 1)2 + a2]−1/2 ≤ 2−1/2, if a ≤ |b|. Thus
it remains to compute the integral from zero to infinity. To do this we change variables
from x to xzτ∞. This turns the integral into an integration over a path C1 in the complex
plane which is the straight line from zero passing through s to infinity. Since z

z−1 is
analytic in the complex plane with the positive real axis removed, the integration path
C1 can be rotated to the negative real axis C2 without changing the integral, since the
integral along the arc A at infinity vanishes (see the figure). In fact
∫ ∞

0

dx

x1+1/α

xzτ∞
xzτ∞ − 1

= z1/ατ
1/α
∞
∫ ∞z

0

dx

x1+1/α

x

x − 1
= z1/ατ

1/α
∞
∫ −∞

0

dx

x1+1/α

x

x − 1

= (−z)1/ατ 1/α
∞
∫ ∞

0

dx

x1+1/α

x

x + 1
. (4.146)

This proves the lemma. ��
We can now collect the results obtained in this and the previous subsection to control

the asymptotics of the eigenvalue λ(u).

Corollary 4.18. With u = z�̂(E)−1, on the domain Dδ defined in (4.104),

lim
E↓−∞

lim
N↑∞

(1 − λ(u)) = (−zτ∞)1/απcosec (π/α)+O(|z|), in Probability.

(4.147)
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s

Rotation of  the integration contour to the real axis

A
C1

C2 Re

Im

Proof. It suffices to combine formula (4.102), the estimate (4.105) of Lemma 4.14, and
Corollary 4.17. ��
Remark. The diligent reader (if any) who has reached this point will be relieved to finally
see some formulas familiar from the trap-model emerge.

Having this result, we can now also estimate the norm of the error term M∗(1)(u).

Corollary 4.19. With u = z�̂(E)−1, on the domain Dδ defined in (4.104),

lim sup
E↓−∞

lim sup
N↑∞

‖M∗(1)(u)‖ ≤ C(d)|z|2(1−1/α), in Probability. (4.148)

Proof. This follows from Lemma 4.13 and Corollary 4.18. ��

Remark. We can only now appreciate why we expanded to second order in (4.58). It is
crucial to have the norm of K∗(1)(u) bounded by something of order |z|2 to obtain an
estimate that tends to zero in the corollary above.

4.5. Controlling the inhomogeneous term. Our next step is to establish control over the
inhomogeneous term F ∗

σ (m, u) defined in (4.2). To do so we use the Markov property
to represent

P[τσT (E)\σ > m+ n] =
∑

σ ′ �∈T (E)\σ
P[σ(m) = σ ′, τ σT (E)\σ > m]P[τσ

′
T (E)\σ > n]

=
∑

σ ′ �∈T (E)
P[σ(m) = σ ′, τ σT (E)\σ > m]P[τσ

′
T (E)\σ > n]

+ P[σ(m) = σ, τσT (E)\σ > m]P[τσT (E)\σ > n]. (4.149)
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Inserting this relation into (4.2) we obtain that

F ∗
σ (m, u) =

∑

σ ′ �∈T (E)
P[σ(m) = σ ′, τ σT (E)\σ > m]Lσ ′

σ (u)

+P[σ(m) = σ, τσT (E)\σ > m]Lσσ (u), (4.150)

where Lσσ (u) is given by (3.14) and

Lσ ′
σ (u) =

Gσ
′
T (E)\σ (u)− 1

eu − 1
. (4.151)

Thus, using that

Gσ
′
T (E)\σ (u) = Gσ

′
T (E)\σ,T (E)(u)+Gσ

′
σ,T (E)(u)G

σ
T (E)\σ (u) (4.152)

we get

F ∗
σ (m, u) = 1

eu − 1

[

P[σ(m) = σ, τσT (E)\σ > m]
(
GσT (E)\σ (u)− 1

)

+
∑

σ ′ �∈T (E)
P[σ(m) = σ ′, τσT (E)\σ > m]

(
Gσ

′
T (E)\σ,T (E)(u)+Gσ

′
σ,T (E)(u)G

σ
T (E)\σ (u)− 1

)]

.

(4.153)

As is by now usual, we will need a rather crude bound for u away from the origin
complemented by a finer estimate for very small values of |u|. The former follows from
the next lemma.

Lemma 4.20. Assume that �(u) ≤ 1
2 �̂

−1. Then

|F ∗
σ (m, u)| ≤ 2

|eu − 1|P[τσT (E)\σ > m]
(∣
∣
∣G

σ
T (E)\σ (u)

∣
∣
∣+ 2

)
. (4.154)

Proof. By Lemma 3.4, under the condition on u,
∣
∣
∣Gσ

′
σ,T (E)(u)

∣
∣
∣ =

∣
∣
∣gσ

′
σ (u)

∣
∣
∣ ≤ 2 (in fact

≤ 2/(M − 1)). Similarly,
∣
∣
∣Gσ

′
T (E)\σ,T (E)(u)

∣
∣
∣ ≤ 2. Inserting this into (4.153) and noting

that
∑
σ ′ �∈T (E)\σ P[σ(m) = σ ′, τ σT (E)\σ > m] = P[τσT (E)\σ > m] one arrives readily at

the claimed bound. ��

Bounds for |u| � 1. As was the case for the resolvent, we have to identify more precisely
the leading term of the inhomogeneous term for the contribution to the inversion integral
for u very close to the origin. We begin with the m-dependent probabilities in (4.153).

Lemma 4.21. There is a finite positive constant C such that, with bσ as in (3.9),

∣
∣
∣P
[
τσT (E)\σ > m, σ(m) = σ

]
− pN(σ, σ )

m
∣
∣
∣ ≤ Cme−β

√
NEσ e

−m/Eτσ
T (E)\σ bσ . (4.155)
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Proof. Note that pN(σ, σ )m is the probability of the event that σ(k) remains at σ during
the entire period from time zero to time m which is a subset of the event {τσT (E)\σ >
m, σ(m) = σ }. In what remains, there must be a first time when σ(k) �= σ . Thus

∣
∣
∣P
[
τσT (E)\σ > m, σ(m) = σ

]
− pN(σ, σ )

m
∣
∣
∣

≤
m−1∑

k=1

pN(σ, σ )
k−1

∑

σ ′∼σ
pN(σ, σ

′)P
[
τσ

′
T (E)\σ > m− k, σ (m− k) = σ

]

≤ (1 − pN(σ, σ ))

m−1∑

k=1

pN(σ, σ )
k−1 max

σ ′∼σ
P

[
τσ

′
T (E)\σ > m− k

]
. (4.156)

The probability in the last line is similar to the probabilities estimated in Corollary 3.3,
except that the starting point is now σ ′ instead of σ . However using the decomposition
(4.152), one verifies easily that following the same lines as in the proof of that corollary,
one obtains the estimate

P

[
τσ

′
T (E)\σ > m− k

]
≤ Ce

−(m−k)/Eτσ ′
T (E)\σ bσ (4.157)

which is all we will need here. Inserting this estimate into (4.156) and using that, by
Proposition 2.2 (together with the remark that follows it),

pN(σ, σ )
k =

(
1 − e−β

√
NEσ

)k ≤ e−ke
−β√

NEσ ≤ e
−k/Eτσ

T (E)\σ , (4.158)

the bound (4.155) follows directly. ��

Remark. Let us note that the bound (4.155) is really effectively smaller than the dominant
term, if Eσ is “deep” within the top, even though we concede a little of the exponential
decay when replacing eβ

√
NEσ by E

σ
T (E)\σ . The point is that this error will tend to zero,

while the prefactor of the exponential tends to zero as well. Since it will be the σ with
exceptionally large Eσ that contribute to the long time behavior, this will do the job.

Lemma 4.22. There exists a finite positive constant C such that

(i) If EτσT (E)\σ > �̂, then

P

[
τσT (E)\σ > m, σ(m) �∈ T (E)

]
≤ e−β

√
NEσ �̂

1 − �̂/EτσT (E)\σ
e
−m/Eτσ

T (E)\σ bσ . (4.159)

(ii) If EτσT (E)\σ ≤ �̂, then

P

[
τσT (E)\σ > m, σ(m) �∈ T (E)

]
≤ m

�̂
e−m/�̂. (4.160)

Proof. Note that if the event {τσT (E)\σ > m, σ(m) �∈ T (E)} occurs, then there exists a
last time m− k < m when the process visits the σ . This gives us the bound
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P

[
τσT (E)\σ > m, σ(m) �∈ T (E)

]

≤
m−1∑

k=1

P

[
τσT (E)\σ > m− k,

] ∑

σ ′∼σ
pN(σ, σ

′)P
[
τσ

′
T (E) > k − 1

]

≤ (1 − pN(σ, σ ))

m−1∑

k=1

e
−(m−k)/Eτσ

T (E)\σ−(k−1)/�̂(E)
. (4.161)

In case (i) we can extract e−m/Eτ
σ
T (E)\σ from the sum and oversum the remaining geo-

metric series to get (4.159), while in the latter case we simply bound the exponential
terms by their maximum and retain that there are only m terms in the sum. This proves
the lemma. ��

Next we want to deal with the Laplace transforms appearing in (4.153). Concerning
the first line, we are already in good position, since we have the estimates needed for
GσT (E)\σ (u)− 1 (see Proposition 3.6). The second term has, as we have seen, a prefac-
tor that is of lower order in the m behavior, but we have to show that the u-dependent
coefficient is not more singular than that of the first term. To this end we rewrite

Gσ
′
T (E)\σ,T (E)(u)+Gσ

′
σ,T (E)(u)G

σ
T (E)\σ (u)− 1

= Gσ
′
T (E)\σ,T (E)(u)+Gσ

′
σ,T (E)(u)

(
GσT (E)\σ (u)− 1

)
+Gσ

′
σ,T (E)(u)− 1

= Gσ
′
T (E)(u)− 1 +Gσ

′
σ,T (E)(u)

(
GσT (E)\σ (u)− 1

)
. (4.162)

It will suffice to use that, for �u < 1
2 �̂

−1,

|Gσ ′
T (E)(u)− 1| ≤ |u|�̂ (4.163)

and that Gσ
′
σ,T (E)(u) is bounded and analytic.

4.6. Laplace inversion 1. The error terms. After this preparation we are now ready to
attack the Laplace inversion of the function 
∗(u,m,E) given in principle by (4.5).
Recall that we are interested in computing


(n,m,E) ≡ 1

|T (E)|
∑

σ∈T (E)

σ (n,m,E) ≡ (I,
(n,m,E)). (4.164)

Setting


0(n,m,E) ≡ 
(n,m,E)− (I, F (n,m)), (4.165)

(4.5) and the inversion formula for Laplace transforms, we can write


0(n,m,E) = 1

2πi

∫ iπ

−iπ
due−un

(
I,M∗

E(u)F
∗(m, u)

)
. (4.166)
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The notation of Sect. 4.2 (see (4.31)–(4.34)) are again brought into force in the present
section; recall in particular that z = �̂u. The first step of the analysis consists in de-
forming the contour of integration to the contour C consisting of three parts

A ≡
{
u ∈ C : �z = 1/2, |�z| ∈ [1/

√
2κ, π�̂]

}
, (4.167)

B ≡
{
u ∈ C : �z ∈ [1/t̃, 1/2], �z = κ|�z|2

}
, (4.168)

and

D ≡ D1 ∪ D2, (4.169)

where

D1 ≡
{
u ∈ C : |z| = 1/t , �z < c|�z|2

}
,

D2 ≡
{

u ∈ C : �z ∈ [
√

1/(4κ2)+ 1/t2 − 1/(2κ), 1/t̃], �z = κ|�z|2
}

.

(4.170)

Here t and κ are positive parameters that are assumed to be chosen such that C lies in
the domain of validity of Corollary 4.7 and Lemma 4.8, (ii), namely in

(D1(4) ∩D2(L, γ )) ∪D3, for some fixed 1
2 ≤ γ < 1. (4.171)

(Note that this essentially only imposes a constraint on κ , which has to be taken small
enough compared with γ /L.) In what follows, t must be thought of as very large com-
pared with one.At this stage no constraint is imposed on the parameter t̃ ; it will be chosen
as t̃ = tη, for suitable 0 < η < 1, later. For future reference let us define the points:

zA = rA + isA, zB = rB + isB, zD = rD + isD,

rA = 1/2, rB = 1/t̃, rD =
√

1/(4κ2)+ 1/t2 − 1/(2κ),

sA = 1/
√

2κ, sB = 1/
√
κt̃, sD = ((

√
1 + (2κ/t)2 − 1

)
/2κ2

)1/2
.

We expect the main contribution to the integral to come from the part D of the inte-
gration. Thus we show first how to bound the two other contributions. From now on the
letter c will denote a positive constant whose value may change from line to line.

Lemma 4.23. Let A be defined in (4.167). Then
∣
∣
∣
∣

∫

A
due−un

(
I,M∗

E(u)F
∗(m, u)

)
∣
∣
∣
∣ ≤ ce−n/(2�̂). (4.172)

Proof. Calling IA the left hand side of (4.172) we clearly have

IA ≤ 2e−n/(2�̂)
∫ π

sA/�̂

dv
∣
∣
(
I,M∗

E(1/(2�̂)+ iv)F ∗(m, 1/(2�̂)+ iv)
)∣
∣

≤ 2e−n/(2�̂)�̂−1
∫ π�̂

1/
√

2κ
ds
∥
∥M∗

E((1/2 + is)/�̂)
∥
∥
∥
∥F ∗(m, (1/2 + is)/�̂)

∥
∥∞ .

(4.173)
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D
D

A

~

1
2

z

z

zA

D

B

B

r

s

The contour   C  in the variables  r  and  s

0.51/t 1/ t 

Under our assumption on κ ,
∥
∥M∗

E((1/2 + is)/�̂)
∥
∥ can be bounded as in (4.48) of Cor-

ollary 4.7. Since cos(s/�̂) is monotone decreasing on [1/
√

2κ, π�̂], we may add to
our previous requirement on κ that it is chosen small enough so that

√
1 −O(�̄−1)

2

√

1+�̂22(1−cos(1/(�̂
√

2κ)))≥1+ 4

M−1
(1+O(d/N))+ C+C′

2γ
.

(4.174)

The bound (4.48) then yields

∥
∥M∗

E((1/2 + is)/�̂)
∥
∥ ≤ 1 + Cγ−1

√
1 −O(�̄−1)

1
√

1 + �̂22(1 − cos(s/�̂))
. (4.175)

To bound
∥
∥F ∗(m, (1/2 + is)/�̂)

∥
∥∞ we use Lemma 4.20 together with the fact that on

A, by the estimates of Proposition 3.2, |GσT (E)\σ (u)| ≤ c, to get that

∥
∥F ∗(m, (1/2 + is)/�̂)

∥
∥∞ ≤ c

∣
∣
∣e
(1/2+is)/�̂ − 1

∣
∣
∣
−1
. (4.176)

Set ρ = exp(1/(2�̂)) and v = s/�̂. Then
∣
∣ρeiv − 1

∣
∣2 = (1 −ρ)2 + 2ρ(1 − cos v), and

since ρ > 1 + 1/(2�̂),

∥
∥F ∗(m, (1/2 + is)/�̂)

∥
∥∞ ≤ c�̂

√
1/4 + �̂22(1 − cos(s/�̂))

. (4.177)
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Inserting (4.175) and (4.177) in (4.173) we get

IA ≤ 2ce−n/(2�̂)
∫ π�̂

1/
√

2κ
ds

1
√

1 + �̂22(1 − cos(s/�̂))
√

1/4 + �̂22(1 − cos(s/�̂))

≤ 2ce−n/(2�̂)
∫ π�̂

1/
√

2κ
ds

1

1/4 + �̂22(1 − cos(s/�̂))
. (4.178)

To evaluate the last integral above, we split the integration interval into [1/
√

2κ, π�̂/4]
and [π�̂/4, π�̂]. On the first of these intervals, �̂22(1−cos(s/�̂)) is well approximated
by s2 so that

∫ π�̂/4

1/
√

2κ
ds

1

1/4 + �̂22(1 − cos(s/�̂))
≤ c

∫ π�̂/4

1/
√

2κ

ds

1 + s2 ≤ c′. (4.179)

We then use that on the remaining interval �̂22(1 − cos(s/�̂)) > �̂2 so that

∫ π�̂

ı�̂/4
ds

1

1/4 + �̂22(1 − cos(s/�̂))
≤ c

�̂
. (4.180)

Inserting (4.179) and (4.180) in (4.178) yields the claim of the lemma. ��
Lemma 4.24. Let B be defined in (4.168). If t = n/�̂(E) and t̃ = tη then, for all
0 < η < 1,

∣
∣
∣
∣

∫

B
due−un

(
I,M∗

E(u)F
∗(m, u)

)
∣
∣
∣
∣ ≤ ctη exp(−t1−η). (4.181)

Proof. It will be enough to use norm estimates, that is, calling IB the left hand side of
(4.181),

IB ≤
∫

B
|du|e−n�u ∥∥M∗

E(u)
∥
∥
∥
∥F ∗(m, u)

∥
∥∞

= �̂−1
∫

�̂B
|dz|e−t�z ∥∥M∗

E(z/�̂)
∥
∥
∥
∥F ∗(m, z/�̂)

∥
∥∞

≤ 2c�̂−1
∫ sA

sB

ds e−κs
2t
∥
∥
∥M

∗
E((κs

2 + is)/�̂)

∥
∥
∥

∥
∥
∥F

∗(m, (κs2 + is)/�̂)

∥
∥
∥∞

.

(4.182)

As in the proof of the previous lemma we use (4.48) to write the bound
∥
∥
∥M

∗
E((κs

2 + is)/�̂)

∥
∥
∥

≤ 1 + Cγ−1κs2
√

1 + �̂22(1 − cos(s/�̂))(1 −O(�̄−1))− 1 − 4
M−1 (1 +O(d/N))− (C + C′)γ−1κs2

.

(4.183)

Using this time that on the integration interval, �̂22(1−cos(s/�̂)) ≥ s2(1−1/(6κ�̂)2),
and that for 0 < x < 1,

√
1 + x ≥ 1 + x/2, we get (for κ small enough, t small enough

compared withM , andM,N large) that the denominator in the r.h.s. of (4.183) is greater
than s2/4. Since the numerator is bounded above by a constant, we may write

∥
∥
∥M

∗
E((κs

2 + is)/�̂)

∥
∥
∥ ≤ cs−2. (4.184)
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Turning to the term
∥
∥F ∗(m, (κs2 + is)/�̂)

∥
∥∞ observe that, proceeding as we did to

derive (4.176) we obtain,
∥
∥
∥F

∗(m, (κs2 + is)/�̂)

∥
∥
∥∞

≤ c

∣
∣
∣e
(κs2+is)/�̂ − 1

∣
∣
∣
−1
. (4.185)

Now, with ρ = exp((κs2)/�̂) > 1 and v = s/�̂,
∣
∣ρeiv − 1

∣
∣2 = (1 − ρ)2 + 2ρ(1 −

cos v) ≥ 2(1 − cos v). Combining this with the bound established on the line following
(4.183), (4.185) becomes

∥
∥F ∗(m, (1/2 + is)/�̂)

∥
∥∞ ≤ cs−1�̂. (4.186)

Collecting (4.182), (4.184) and (4.186), we arrive at

IB ≤ c

∫ sA

sB

ds e−κs
2t s−3 ≤ c

∫ 1/
√

2

1/
√
t̃

ds e−s
2t s−3 ≤ ce−t/t̃

∫ 1/
√

2

1/
√
t̃

ds s−3 ≤ ct̃e−t/t̃ .

(4.187)

Thus, choosing t̃ = tη, 0 < η < 1, concludes the proof of the lemma. ��
We now consider the error term resulting from the M∗(1)(u) part of the resolvent on

the part D of the integration contour.

Lemma 4.25. If t = n/�̂(E) then, for all 0 < δ < 1/2,

lim sup
E↓−∞

lim sup
N↑∞

∣
∣
∣
∣

∫

D
due−nu

(
I,M∗(1)(u)F ∗(m, u)

)∣∣
∣
∣

≤ ct−2(1−1/α) + c

2(1 − 1/α)
t−2δ(1−1/α) + ct−(1−2δ) exp(−t1−2δ). (4.188)

Proof. Again, it will be enough to use norm estimates, that is
∣
∣
∣
∣

∫

D
due−nu

(
I,M∗(1)(u)F ∗(m, u)

)∣∣
∣
∣ ≤
∫

D
|du|e−n�u‖M∗(1)(u)‖‖F ∗(m, u)‖∞.

(4.189)

To bound ‖F ∗(m, u)‖∞ we proceed as in the previous two lemmata and use Lemma 4.20
together with the fact that on D, by the estimates of Proposition 3.2, |GσT (E)\σ (u)| ≤ c,
to establish that

‖F ∗(m, u)‖∞ ≤ c|eu − 1|−1 ≤ c|u|−1. (4.190)

Hence
∫

D
|du|e−n�u‖M∗(1)(u)‖‖F ∗(m, u)‖∞ ≤ c

∫

�̂D
|dz|e−t�z‖M∗(1)(z/�̂)‖|z|−1

(4.191)

and12 by Corollary 4.19,

lim sup
E↓−∞

lim sup
N↑∞

∫

�̂D
|dz|e−t�z‖M∗(1)(z/�̂)‖|z|−1

12 The appearance of �̂ after the limit has been taken in the inequality below may look confusing.
Observe however that, for all N,E, the rescaled contour �̂D does not depend on N and E so that this
notation is formally correct.
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≤ c

∫

�̂D
|dz|e−t�z|z|1−2/α ≡ cI�̂D (4.192)

We now decompose I�̂D as I�̂D = I�̂D1
+ I�̂D2

according to (4.170). Clearly

I�̂D1
≤
∫ 2π

0
dθ t−(1−2/α)−1 = 2πt−(2−2/α). (4.193)

To bound I�̂D2
we first observe that

I�̂D2
≤
∫ sB

sD

ds e−s
2κt
√
(2κs)2 + 1

(√
(κs2)2 + s2

)1−2/α ≤ c

∫ √
κsB

√
κsD

ds e−s
2t s1−2/α,

(4.194)

and since for t large, sD ≈ 1/t ,

I�̂D2
≤ c

∫ 1

√
κ/t

ds e−s
2t s1−2/α. (4.195)

Introducing a number 0 < δ < 1/2, we then split the last integral above into

J1 ≡
∫ 1/tδ

√
κ/t

ds e−s
2t s1−2/α and J2 ≡

∫ 1

1/tδ
ds e−s

2t s1−2/α. (4.196)

As no exponential decay is to be gained in J1, we simply write

J1 ≤
∫ 1/tδ

√
κ/t

ds s1−2/α = 1

2(1 − 1/α)

(
t−2δ(1−1/α) − κ1−1/αt−2(1−1/α)). (4.197)

To deal with J2 we distinguish two cases: if 1 − 2/α > 0, then

J2 ≤
∫ 1

1/tδ
ds e−s

2t = 1

2

∫ 1

1/t2δ
dx

e−xt√
x

≤ tδ
∫ 1

1/t2δ
dx e−xt ≤ t−(1−δ) exp

(− t1−2δ),

(4.198)

while if 1 − 2/α ≤ 0,

J2 ≤ tδ(2/α−1)
∫ 1

1/tδ
ds e−s

2t ≤ tδ(2/α−1)−(1−δ) exp(−t1−2δ) ≤ t−(1−2δ) exp
(− t1−2δ).

(4.199)

We have thus obtained that

I�̂D2
≤ c

2(1 − 1/α)
t−2δ(1−1/α) + ct−(1−2δ) exp

(− t1−2δ) (4.200)

which, together with (4.193), yields the claim of the lemma. ��
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4.7. Laplace inversion 2. The main contributions.

Warning. In this last section we abandon the notation s = �(z) introduced in (4.33).
The letter s now takes back its initial meaning and designates the rescaled time variable
s ≡ m/�̂) of Theorem 1.

We are now moving towards the principle contributions. Note that

(
I,M∗(0)(u)F ∗(m, u)

)
= λ(u)

1 − λ(u)

(
I, F ∗(m, u)

) ≡ hN,E(m, u). (4.201)

We will prove the following result which together with the estimates on the error terms
will imply our main theorem.

Proposition 4.26. For u on C, we have that

lim
E↓−∞

lim
N↑∞

hN,E(m, u) = H ∗
0 (s, z)(1 +O(|z|1−1/α, |z|1/α))+O(z−1/αe−s/τ∞),

(4.202)

where H ∗
0 (s, u) ≡ ∫∞

0 dtezt
∫∞
s/t

dx
x1/α(1+x) is the Laplace transform of the function H0

defined in (1.10).

Proof. The analysis of
(
I, F ∗(m, u)

)
is in spirit and even detail very similar to that of

M∗(u), except that it is considerably simpler. Note that using (4.153), Lemma 4.21,
Lemma 4.22, Eq. (4.162), and the estimate (4.163), the leading term in this expression is

(
I, F ∗(m, u)

) ≈ 1

|T (E)|
∑

σ∈T (E)
pN(σ, σ )

m
GσT (E)\σ (u)− 1

eu − 1
. (4.203)

Note that from (4.107) we get furthermore that

GσT (E)\σ (u)− 1

eu − 1
= �̂(E)

1

zσ − z
(1 + R(u)) , (4.204)

where the remainder R(u) is of the same type as those appearing in the proof of Lemma
4.14. Thus we obtain

Lemma 4.27. With the notation of Lemma 4.14,
∣
∣
∣
∣
∣
pN(σ, σ )

m
GσT (E)\σ (u)− 1

eu − 1
− e−me

−β√
NEσ �̂(E)

zσ − z

∣
∣
∣
∣
∣
≤ C�̂(E)|z|. (4.205)

Proof. Essentially contained in the proof of Lemma 4.14. ��
Next we can now prove the analogue of Corollary 4.17.

Lemma 4.28. Set s ≡ m/�̂. Then, uniformly on �z < max(�z, 1/2), and �(u) ≤ |�u|,

lim
E↓−∞

lim
N↑∞

1

|T (E)|
∑

σ∈T (E)
e−me

−β√
NEσ 1

zσ − z

= α−1τ∞
∫ ∞

1
e−s/(xτ∞)

dx

(1 − zxτ∞)x1/α in Probability. (4.206)
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Moreover,

α−1τ∞
∫ ∞

1
e−s/(xτ∞)

dx

(1 − zxτ∞)x1/α

= (−zτ∞)1/α
(

z−1πcosec (π/α)−
∫ ∞

0
dtezt

∫ s/t

0

dx

x1/α(1 + x)

)

+O(e−s/τ∞).

(4.207)

Proof. Observing that, by (4.125), me−β
√
NEσ = se−β

√
NEσ �̂ = szσ (1 − 1/M)−1,

(4.206) is proven like (4.143) of Corollary 4.17. To prove (4.207), it will be convenient
to extend the integration in (4.206) all the way to zero, as in the proof of Corollary 4.17.
One can easily estimate the difference, namely

∣
∣
∣
∣

∫ 1

0
e−s/(xτ∞)

dx

(1−zxτ∞)x1/α

∣
∣
∣
∣ ≤ 1√

2

∫ 1

0
e−s/(xτ∞)

dx

x1/α

≤ e−s/τ∞

τ∞
√

2
min

(

s−1,
1

1−1/α

)

. (4.208)

In the extended integral we again change variables and rotate the integration contour
to the negative real axis to get that
∫ ∞

0
e−s/(xτ∞)

dx

(1 − zxτ∞)x1/α = (zτ∞)1/α−1
∫ z∞

0
e−sz/x

dx

(1 − x)x1/α

= −(−zτ∞)1/α−1
∫ ∞

0
e+sz/x

dx

(1 + x)x1/α . (4.209)

According to whether �(z) is positive or negative, we can represent

e+sz/x =
∫ z∞

−zs/x
e−t dt = z

∫ +∞

−s/x
e−zt dt or

e+sz/x =
∫ −z∞

−zs/x
e−t dt = −z

∫ +∞

s/x

e+zt dt respectively. (4.210)

Inserting these representation into (4.209) and changing the order of integration in the
resulting double integrals gives in both cases
∫ ∞

0
e−s/(xτ∞)

dx

(1 − zxτ∞)x1/α

= τ−1
∞ (−zτ∞)1/α

(

(z)−1απcosec (π/α)−
∫ ∞

0
dtezt

∫ s/t

0

dx

x1/α(1 + x)

)

.

(4.211)

��
We can now combine the asymptotics for 1 − λ(u) obtained in Corollary 4.18 with

the preceding result. This shows that

lim
E↓−∞

lim
N↑∞

λ(u)

1 − λ(u)

1

|T (E)|
∑

σ∈T (E)
e−me

−√
NEσ �̂(E)

zσ − z
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= z−1 −
∫∞

0 dtezt
∫ s/t

0
dx

x1/α(1+x)
πcosec (π/α)

(
1 +O(|z|1−1/α, |z|1/α)

)
+O

(
z−1/αe−s/τ∞

)
.

(4.212)

The leading term is readily identified as the Laplace transform of

H0(s/t) ≡ 1 −
∫ s/t

0
dx

x1/α(1+x)
πcosec (π/α)

(4.213)

which we recognise as precisely the function that appeared as the leading asymptotic
contribution in the trap model in Theorem 1.1. The bounds on the error terms then follow
from simply estimating the corrections uniformly on C. ��

The last step before completing the proof of Theorem 1 is now to consider the con-
tribution FN,E(n+m). We leave it to the reader to show that the leading asymptotics of
this term is given by

α−1
∫ ∞

1
dxe−(t+s)/xx−1−1/α ≤ 1

α(t + s)1/α

∫ ∞

0
dxe−1/xx−1−1/α (4.214)

which is sub-dominant as s and t tend to infinity. Collecting all the estimates of this
section concludes the proof of the main theorem. ��
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in spin-glasses and other glassy systems. In: Spin-Glasses and Random Fields A.P. Young
(ed.), Singapore: World Scientific, 1998

[BD] Bouchaud, J.P., Dean, D.: Aging on Parisi’s tree. J. Phys. I (France) 5, 265 (1995)
[BDG] Ben Arous, G., Dembo, A., Guionnet, A.: Aging of spherical spin glasses. Probab. Theor.

Rel. Fields 120, 1–67 (2001)
[BEGK1] Bovier, A., Eckhoff, M., Gayrard, V., Klein, M.: Metastability in stochastic dynamics of

disordered mean field models. Probab. Theory Relat. Fields 119, 99–161 (2001)
[BEGK2] Bovier, A., Eckhoff, M., Gayrard, V., Klein, M.: Metastability and low lying spectra in

reversible Markov chains. Commun. Math. Phys. 228, 219–255 (2002)
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