Institut für Angewandte Mathematik
 Markov Processes

Prof. Dr. A. Bovier / Dr. E. Petrou

Exercise sheet 9

Exercise 1

(7 Points)
Let $0<a<b$ and consider the operator

$$
\mathcal{D}(G)=C^{2}([0,1]), \quad G f(x)=x(1-x) f^{\prime \prime}(x)+(a-b x) f^{\prime}(x)
$$

Use duality to show uniqueness for the martingale problem for G.
Hint: Take $\{0,1,2, \ldots\}$ as a state space for the dual problem and $f(x, y)=x^{y}$.

Exercise 2

(7 Points)
Let b_{i} and $\sigma_{i j}, 1 \leq i, j \leq d$, be progressively measurable function from $[0, \infty) \times C[0, \infty)^{d}$ into \mathbb{R}. Such that

$$
\|b(t, y)\|^{2}+\|\sigma(t, y)\|^{2} \leq C\left(1+\max _{0 \leq s \leq t}\|y(s)\|^{2}\right), \quad 0 \leq t<\infty, y \in C[0, \infty)^{d}
$$

where C is a positive constant. Furthermore, let the stochastic integral equation

$$
X_{t}=X_{0}+\int_{0}^{t} b\left(x, X_{s}\right) d s+\int_{0}^{t} \sigma\left(s, X_{s}\right) d B_{s}, t \in \mathbb{R}_{+}
$$

have a weak solution, with $E\left[\left\|X_{0}\right\|^{2 m}\right]<\infty$ for some $m \geq 1$. Prove that for every finite time $T>0$, we have

$$
\begin{gathered}
E\left(\max _{0 \leq s \leq t}\left\|X_{s}\right\|^{2 m}\right) \leq K e^{K t}\left(1+E\left[\left\|X_{0}\right\|^{2 m}\right]\right), \quad 0 \leq t \leq T \\
E\left(\left\|X_{t}-X_{s}\right\|^{2 m}\right) \leq K\left(1+E\left[\left\|X_{0}\right\|^{2 m}\right]\right)(t-s)^{m}, \quad 0 \leq s<t \leq T,
\end{gathered}
$$

where K is a positive constant depending only on m, T, C and d.

Exercise 3

(6 Points)
Prove that Theorem 4.15 is still valid, if the condition that the coefficients b_{i} and $\sigma_{i j}, 1 \leq i, j \leq d$, are bounded, is replaced by

$$
\|b(y)\|^{2}+\|\sigma(y)\|^{2} \leq C\left(1+\|y\|^{2}\right)
$$

and the initial distribution μ satisfies

$$
\int_{\mathbb{R}^{d}}\|x\|^{2 m} \mu(d x)<\infty, \text { for some } m>1
$$

