Institut für Angewandte Mathematik
 Markov Processes

Prof. Dr. A. Bovier / Dr. E. Petrou

Exercise sheet 8

Exercise 1

(10 Points)
Consider the operators

$$
\begin{array}{ll}
\mathcal{D}\left(G_{1}\right)=\left\{f \in C^{2}([0, \infty)): f^{\prime \prime}(0)=0\right\}, & G_{1} f=\frac{1}{2} f^{\prime \prime}, \\
\mathcal{D}\left(G_{2}\right)=\left\{f \in C^{2}([0, \infty)): f^{\prime}(0)=0\right\}, & G_{2} f=\frac{1}{2} f^{\prime \prime}
\end{array}
$$

corresponding to absorbing and reflecting Brownian motion respectively (see Sh. 6 ex. 1 and Sh. 7 ex. 2). Let $g \in C^{2}(\mathbb{R})$ be an odd function.
a) Show that the martingale problems associated to G_{1} and G_{2} are dual with respect to $(f, 0,0)$, where $f(x, y)=g(x+y)+g(x-y)$.
b) Let X be absorbing Brownian motion and let Y be reflecting Brownian motion. Use the result in part a) to show that

$$
\mathbb{P}(X(t)>y \mid X(0)=x)=\mathbb{P}(Y(t)<x \mid Y(0)=y)
$$

Exercise 2

(10 Points)
Let X be a one-dimensional Lévy process with characteristic exponent ψ and characteristics $\left(b, \sigma^{2}, \nu\right)$. Let $\left\{P_{t}\right\}_{t \geq 0}$ be the associated Feller-Dynkin semigroup and G be its infinitesimal generator. Prove that:
(a) For each $t \geq 0, f \in C_{c}^{\infty}(\mathbb{R})^{1}, x \in \mathbb{R}$,

$$
\left(P_{t} f\right)(x)=\frac{1}{\sqrt{2 \pi}} \int_{\mathbb{R}} e^{i u x} e^{-t \psi(u)} \hat{f}(u) d u
$$

where \hat{f} is the Fourier transform of f.
(b) For each $f \in C_{c}^{\infty}(\mathbb{R}), x \in \mathbb{R}$,

$$
(G f)(x)=-\frac{1}{\sqrt{2 \pi}} \int_{\mathbb{R}} e^{i u x} \psi(u) \hat{f}(u) d u
$$

(c) For each $C_{c}^{\infty}(\mathbb{R}), x \in \mathbb{R}$,

$$
(G f)(x)=b f^{\prime}(x)+\frac{1}{2} \sigma^{2} f^{\prime \prime}(x)+\int_{\mathbb{R} \backslash\{0\}}\left[f(x+y)-f(x)-y f^{\prime}(x) \mathbf{1}_{|y|<1}\right] \nu(d y)
$$

Hint: Use the fact that there exists $C>0$ such that

$$
|\psi(u)| \leq C\left(1+u^{2}\right), \text { for all } u \in \mathbb{R}
$$

[^0]
[^0]: ${ }^{1} C_{c}^{\infty}(\mathbb{R})$ denotes the set of smooth functions with compact support.

