Institut für Angewandte Mathematik Markov Processes

Prof. Dr. A. Bovier / Dr. E. Petrou

Exercise sheet 5

Exercise 1 (Ornstein-Uhlenbeck's Process)

The semigroup of the Ornstein-Uhlenbeck Process is given by:

$$(P_t f)(x) = \int f(e^{-t}x + \sqrt{1 - e^{-2t}y}) \frac{e^{-\frac{y^2}{2}}}{\sqrt{2\pi}} dy,$$

for $f \in C_0(\mathbb{R})$. Show that the infinitesimal generator of the process is given by

$$Gf(x) = f''(x) - xf'(x),$$

and find its domain.

Exercise 2 (The Translation Semigroup)

For the Banach space $C_0(\mathbb{R})$ consider the semigroup $\{P_t\}_{t\in\mathbb{R}_+}$ defined by $(P_tf)(x) = f(x+t)$ for each $f \in C_0(\mathbb{R})$, $x \in \mathbb{R}$, $t \ge 0$. Prove that:

- (a) P_t is a strongly continuous contraction semigroup;
- (b) Find the infinitesimal generator G and its domain;
- (c) Prove that G is a closed linear operator.

Exercise 3

Let $\{X_t\}_{t \in \mathbb{R}_+}$ be a one dimensional Lévy process with characteristic triplet $(0, 0, \nu)$, where $\nu(-\infty, 0) = 0$ and $\int_0^\infty (1 \wedge x)\nu(dx) < \infty$.

Prove that the infinitesimal generator G of X takes the following form

$$(Gf)(x) = \int_0^\infty (f(x+y) - f(x))\nu(dx),$$

for all $f \in C_0^1(\mathbb{R})$.

Sum: 20 Points

Note: The Banach spaces given in the exercise are equipped with the sup-norm, except if otherwise stated.

Ausgabe: 15.05.2012 Abgabe: 22.05.2012

(8 Points)

(8 Points)

(4 Points)