Institut für Angewandte Mathematik
 Markov Processes

Prof. Dr. A. Bovier / Dr. E. Petrou

Exercise sheet 4

Exercise 1

(8 Points)
Let $\left(X_{t}\right)_{t \geq 0}$ be a Lévy process with $X_{0}=0$, and let μ_{t} denote the law of X_{t}.
a) Prove that $\mu_{t+s}=\mu_{t} * \mu_{s}$ for $t, s \geq 0$.

For bounded measurable functions $f: \mathbb{R}^{d} \rightarrow \mathbb{R}$ and $t \geq 0$ we define

$$
P_{t} f(x):=\int_{\mathbb{R}^{d}} f(x+y) d \mu_{t}(y)
$$

b) Show, for fixed $t>0$, that $P_{t} f$ is continuous for all bounded measurable functions f if and only if μ_{t} is absolutely continuous with respect to the Lebesgue measure.

Exercise 2

(4 Points)
A linear operator $G: \mathcal{D}(G) \subseteq \mathcal{B} \rightarrow \mathcal{B}$ on a Banach space \mathcal{B} is called closable if the closure of its graph $\{(x, G x): x \in \mathcal{D}(G)\}$ is again the graph of a linear operator.
a) Show that G is closable if and only if

$$
\left[\left(f_{n}\right)_{n} \subseteq \mathcal{D}(G), f_{n} \rightarrow 0, G f_{n} \rightarrow g\right] \Rightarrow[g=0]
$$

b) Give an example of a linear operator G that is not closable.

Exercise 3 (Hille-Yosida)

(8 Points)
Let $B_{0}=C_{0}(\mathbb{R})$ be a Banach space equipped with the sup-norm and $G=\frac{1}{2} \frac{d^{2}}{d x^{2}}$ be a linear operator with $\mathcal{D}(G)=C_{0}^{2}(\mathbb{R})$.
(a) Verify that for

$$
\left(R_{\lambda} f\right)(x)=\frac{1}{\sqrt{2 \lambda}} \int_{-\infty}^{\infty} f(y) e^{-\sqrt{2 \lambda}|x-y|} d y
$$

the linear operator $(\lambda I-G)$ is the inverse of R_{λ}.
(b) Use the Hille-Yosida Theorem to prove that there exists a unique strongly continuous contraction semi-group, $P_{t}, t \in \mathbb{R}$, such that

$$
\int_{0}^{\infty} e^{-\lambda t} P_{t} f d t=R_{\lambda} f
$$

for all $\lambda>0$ and for all $f \in C_{0}(\mathbb{R})$.
(c) Prove that

$$
\left(P_{t} f\right)(x)=\int_{-\infty}^{\infty} \frac{1}{\sqrt{2 \pi t}} f(y) e^{-\frac{(x-y)^{2}}{2 t}} d y
$$

for all $f \in C_{0}(\mathbb{R})$ and $x \in \mathbb{R}$.

