Institut für Angewandte Mathematik **Markov Processes**

Prof. Dr. A. Bovier / Dr. E. Petrou

Exercise sheet 4

Exercise 1

Let $(X_t)_{t\geq 0}$ be a Lévy process with $X_0 = 0$, and let μ_t denote the law of X_t .

a) Prove that $\mu_{t+s} = \mu_t * \mu_s$ for $t, s \ge 0$.

For bounded measurable functions $f : \mathbb{R}^d \to \mathbb{R}$ and $t \ge 0$ we define

$$P_t f(x) := \int_{\mathbb{R}^d} f(x+y) \, d\mu_t(y) \; .$$

b) Show, for fixed t > 0, that $P_t f$ is continuous for all bounded measurable functions f if and only if μ_t is absolutely continuous with respect to the Lebesgue measure.

Exercise 2

A linear operator $G : \mathcal{D}(G) \subseteq \mathcal{B} \to \mathcal{B}$ on a Banach space \mathcal{B} is called *closable* if the closure of its graph $\{(x, Gx) : x \in \mathcal{D}(G)\}$ is again the graph of a linear operator.

a) Show that G is closable if and only if

$$\left[(f_n)_n \subseteq \mathcal{D}(G), \ f_n \to 0, \ Gf_n \to g \right] \ \Rightarrow \ [g = 0]$$

b) Give an example of a linear operator G that is not closable.

Exercise 3 (Hille-Yosida)

Let $B_0 = C_0(\mathbb{R})$ be a Banach space equipped with the sup-norm and $G = \frac{1}{2} \frac{d^2}{dx^2}$ be a linear operator with $\mathcal{D}(G) = C_0^2(\mathbb{R}).$

(a) Verify that for

$$(R_{\lambda}f)(x) = \frac{1}{\sqrt{2\lambda}} \int_{-\infty}^{\infty} f(y) e^{-\sqrt{2\lambda}|x-y|} dy,$$

the linear operator $(\lambda I - G)$ is the inverse of R_{λ} .

(b) Use the *Hille-Yosida* Theorem to prove that there exists a unique strongly continuous contraction semi-group, P_t , $t \in \mathbb{R}$, such that

$$\int_0^\infty e^{-\lambda t} P_t f dt = R_\lambda f,$$

for all $\lambda > 0$ and for all $f \in C_0(\mathbb{R})$.

(c) Prove that

$$(P_t f)(x) = \int_{-\infty}^{\infty} \frac{1}{\sqrt{2\pi t}} f(y) e^{-\frac{(x-y)^2}{2t}} dy,$$

for all $f \in C_0(\mathbb{R})$ and $x \in \mathbb{R}$.

Sum: 20 Points

Ausgabe: 08.05.2012 Abgabe: 15.05.2012

(8 Points)

(4 Points)

(8 Points)