Institut für Angewandte Mathematik
 Markov Processes

Prof. Dr. A. Bovier / Dr. E. Petrou

Exercise sheet 3

Ausgabe: 24.04.2012
Abgabe: 08.05.2012

Exercise 1

(4 Points)
Let $\left(X_{t}\right)_{t \geq 0}$ be a Markov process with transition function $\left(P_{t}\right)_{t \geq 0}$ and f a bounded measurable function. Prove that $\left(P_{t-s} f\left(X_{s}\right), s \in[0, t]\right)$ is a martingale for any $t>0$.

Exercise 2 (Probabilistic interpretation of the resolvent)
(6 Points)
Let $\left(P_{t}\right)_{t \geq 0}$ be the transition kernel of a continuous time Markov process. Furthermore, let S and T be independent exponentially distributed random variables, taking values in $[0, \infty)$ with rate λ and μ respectively. Prove that for $f \in B(\mathbb{R})$ and $\lambda \neq \mu$
(a) $E\left[\left(P_{S} f\right)(x)\right]=\lambda\left(R_{\lambda} f\right)(x)$;
(b) $P(S+T \in d u)=\lambda \mu \frac{e^{-\lambda u}-e^{-\mu u}}{\mu-\lambda} d u$;
(c) $E\left[P_{S+T} f\right]=\lambda \mu R_{\lambda} R_{\mu} f$;

Using the previous results prove the resolvent identity.

Exercise 3

(6 Points)
Prove that the transition kernel of a one dimensional Brownian motion is given by

$$
P_{t}(x, A)=\frac{1}{\sqrt{2 \pi t}} \int_{A} \exp \left(-\frac{(y-x)^{2}}{2 t}\right) d y, \text { for } t>0
$$

where $x \in \mathbb{R}$ and $A \in \mathcal{B}(\mathbb{R})$. Assume that initial distribution is $P_{0}(x, \cdot)=\delta_{x}(\cdot)$, where δ_{x} denotes the Dirac measure for all $x \in \mathbb{R}$. Verify that the transition kernel $\left(P_{t}\right)_{t \geq 0}$ defines an honest sub-Markov semi-group.

Exercise 4

(6 Points)
Let $\left(X_{t}\right)_{t \geq 0}$ be a stochastic process, let $\left(P_{t}\right)_{t \geq 0}$ be a transition function and let ν be a probability measure on E. Prove that the following assertions are equivalent:
(a) $\left(X_{t}\right)_{t \geq 0}$ is a Markov process with transition function $\left(P_{t}\right)_{t \geq 0}$ and initial distribution ν with respect to $\left(\mathcal{F}_{t}\right)_{t \geq 0}$, where $\mathcal{F}_{t}=\sigma\left(X_{s}, s \leq t\right)$;
(b) For any $0=t_{0}<t_{1}<\ldots<t_{k}$ and all bounded measurable functions $f_{0}, \ldots, f_{k}: E \rightarrow \mathbb{R}$,

$$
E\left[\prod_{i=0}^{k} f_{i}\left(X_{t_{i}}\right)\right]=\int_{E} \nu\left(d x_{0}\right) f_{0}\left(x_{0}\right) \int_{E} P_{t_{1}}\left(x_{0}, d x_{1}\right) f_{1}\left(x_{1}\right) \ldots \int_{E} P_{t_{k}-t_{k-1}}\left(x_{k-1}, d x_{k}\right) f_{k}\left(x_{k}\right)
$$

Exercise 5

(8 Points)
Let $\left\{N_{t}\right\}_{t \in \mathbb{R}_{+}}$be a Poisson process with intensity $\lambda>0$, and $\left\{X_{n}\right\}_{n \in \mathbb{N}}$ be a sequence of i.i.d random variables with distribution function $F(x)$, independent of N. We define $S_{n}=X_{1}+\cdots+X_{n}$ and the compound Poisson process Y by

$$
Y_{t}=\sum_{n=1}^{N_{t}} X_{n}
$$

Furthermore, let $B(\mathbb{R})$ be a Banach space with respect to the norm

$$
\|f\|=\sup \{|f(x)|, x \in \mathbb{R}\}
$$

for each $f \in B(\mathbb{R})$.

Prove that:
(a) For all $f \in B(\mathbb{R})$, the operator L defined by

$$
L f(x)=E\left[f\left(x+X_{1}\right)\right]=\int_{\mathbb{R}} f(x+y) F(d y)
$$

is a bounded operator on $B(\mathbb{R})$,
(b) For the the operator $G=\lambda(L-I)$ on $B(\mathbb{R})$, we have $\left(P_{t} f\right)(x)=\left(e^{G t} f\right)(x)$, where I is the identity operator.
(c) The linear operator $\left(P_{t}\right)_{t \geq 0}$, defined by

$$
\left(P_{t} f\right)(x)=E\left[f\left(Y_{t}\right) \mid Y_{0}=x\right]=E\left[f\left(x+Y_{t}\right)\right]
$$

for $f \in B(\mathbb{R})$, is a strongly continuous contraction semigroup.
Hint: For part (b) use the fact that $L^{n} f(x)=E\left[f\left(x+X_{1}+\cdots+X_{n}\right)\right]=E\left[f\left(x+S_{n}\right)\right]$.
Sum: 30 Points

