## Institut für Angewandte Mathematik Markov Processes

Prof. Dr. A. Bovier / Dr. E. Petrou

# **Exercise sheet 3**

## **Exercise 1**

Let  $(X_t)_{t\geq 0}$  be a Markov process with transition function  $(P_t)_{t\geq 0}$  and f a bounded measurable function. Prove that  $(P_{t-s}f(X_s), s \in [0, t])$  is a martingale for any t > 0.

#### **Exercise 2** (Probabilistic interpretation of the resolvent)

Let  $(P_t)_{t\geq 0}$  be the transition kernel of a continuous time Markov process. Furthermore, let S and T be independent exponentially distributed random variables, taking values in  $[0, \infty)$  with rate  $\lambda$  and  $\mu$  respectively. Prove that for  $f \in B(\mathbb{R})$  and  $\lambda \neq \mu$ 

(a)  $E[(P_S f)(x)] = \lambda(R_\lambda f)(x);$ 

(b) 
$$P(S+T \in du) = \lambda \mu \frac{e^{-\lambda u} - e^{-\mu u}}{u - \lambda} du;$$

(c) 
$$E[P_{S+T}f] = \lambda \mu R_{\lambda} R_{\mu}f;$$

Using the previous results prove the resolvent identity.

### **Exercise 3**

Prove that the transition kernel of a one dimensional Brownian motion is given by

$$P_t(x,A) = \frac{1}{\sqrt{2\pi t}} \int_A \exp\left(-\frac{(y-x)^2}{2t}\right) dy, \text{ for } t > 0,$$

where  $x \in \mathbb{R}$  and  $A \in \mathcal{B}(\mathbb{R})$ . Assume that initial distribution is  $P_0(x, \cdot) = \delta_x(\cdot)$ , where  $\delta_x$  denotes the Dirac measure for all  $x \in \mathbb{R}$ . Verify that the transition kernel  $(P_t)_{t \geq 0}$  defines an honest sub-Markov semi-group.

### Exercise 4

Let  $(X_t)_{t\geq 0}$  be a stochastic process, let  $(P_t)_{t\geq 0}$  be a transition function and let  $\nu$  be a probability measure on E. Prove that the following assertions are equivalent:

- (a)  $(X_t)_{t\geq 0}$  is a Markov process with transition function  $(P_t)_{t\geq 0}$  and initial distribution  $\nu$  with respect to  $(\mathcal{F}_t)_{t\geq 0}$ , where  $\mathcal{F}_t = \sigma(X_s, s \leq t)$ ;
- (b) For any  $0 = t_0 < t_1 < \ldots < t_k$  and all bounded measurable functions  $f_0, \ldots, f_k : E \to \mathbb{R}$ ,

$$E\left[\prod_{i=0}^{k} f_i(X_{t_i})\right] = \int_E \nu(dx_0) f_0(x_0) \int_E P_{t_1}(x_0, dx_1) f_1(x_1) \dots \int_E P_{t_k - t_{k-1}}(x_{k-1}, dx_k) f_k(x_k) dx_k$$

## Exercise 5

Let  $\{N_t\}_{t\in\mathbb{R}_+}$  be a Poisson process with intensity  $\lambda > 0$ , and  $\{X_n\}_{n\in\mathbb{N}}$  be a sequence of i.i.d random variables with distribution function F(x), independent of N. We define  $S_n = X_1 + \cdots + X_n$  and the compound Poisson process Y by

$$Y_t = \sum_{n=1}^{N_t} X_n.$$



Ausgabe: 24.04.2012 Abgabe: 08.05.2012

(4 Points)

(6 Points)

(6 Points)

(6 Points)

(8 Points)

Furthermore, let  $B(\mathbb{R})$  be a Banach space with respect to the norm

$$||f|| = \sup\{|f(x)|, x \in \mathbb{R}\},\$$

for each  $f \in B(\mathbb{R})$ .

Prove that:

(a) For all  $f \in B(\mathbb{R})$ , the operator L defined by

$$Lf(x) = E[f(x+X_1)] = \int_{\mathbb{R}} f(x+y)F(dy),$$

is a bounded operator on  $B(\mathbb{R})$ ,

- (b) For the the operator  $G = \lambda(L I)$  on  $B(\mathbb{R})$ , we have  $(P_t f)(x) = (e^{Gt} f)(x)$ , where I is the identity operator.
- (c) The linear operator  $(P_t)_{t\geq 0}$ , defined by

$$(P_t f)(x) = E[f(Y_t)|Y_0 = x] = E[f(x + Y_t)],$$

for  $f \in B(\mathbb{R})$ , is a strongly continuous contraction semigroup.

**Hint:** For part (b) use the fact that  $L^n f(x) = E[f(x + X_1 + \dots + X_n)] = E[f(x + S_n)].$ 

Sum: 30 Points