Institut für Angewandte Mathematik Markov Processes

Prof. Dr. A. Bovier / Dr. E. Petrou

Exercise sheet 2

Exercise 1

Consider the continuous time Markov chain with state space $S = \{0, 1\}$ and generator G

$$G = \left(\begin{array}{cc} -\alpha & \alpha \\ \beta & -\beta \end{array}\right),$$

where $\alpha, \beta > 0$. Find the corresponding transition function.

Exercise 2

Let (E, \mathcal{E}) be a Polish space endowed with its Borel σ -algebra. Let $\pi = \pi^1$ be a transition kernel on (E, \mathcal{E}) and define inductively

$$\pi^n(x,B) = \int_E \pi(x,dy)\pi^{n-1}(y,B)$$

for $x \in E$ and $B \in \mathcal{E}$. Prove that for any $t \ge 0$

$$P_t(x,B) = e^{-t} \sum_{n=0}^{\infty} \frac{t^n}{n!} \pi^n(x,B),$$

defines a transition function and describe the corresponding Markov process.

Exercise 3

Let X be a discrete time Markov chain on \mathbb{Z} associated to the transition matrix Q given by

$$P(x, x+1) = p, P(x, x) = r, P(x, x-1) = q,$$

where $p + r + q = 1, p > 0, q > 0, r \ge 0$. We set $\rho = \frac{q}{p}$. Fix $a, b \in \mathbb{Z}$, such that a < b - 1 and denote by $\tau = \inf\{n \ge 0 : X_n \notin (a, b)\}$ the hitting time in $\{a + 1, a + 2, \dots, b - 1\}^c$. Let $\Phi_{a,b}$ be the set of applications from $\{a, a + 1, \dots, b\}$ into \mathbb{R} .

a). In the following we prove that, if $g \in \Phi_{a,b}$, the system

$$\begin{cases} (I-P)u(x) = g(x) & a < x < b\\ u(a) = \alpha, & u(b) = \beta \end{cases}$$
(1)

has a unique solution for every $\alpha, \beta \in \mathbb{R}$.

- i). Prove that there exists a unique $\phi \in \Phi_{a,b}$ such that $\phi(a) = 0$, $\phi(a+1) = 1$, $(I P)\phi(x) = 0$ for every a < x < b, and that such a ϕ is strictly increasing.
- ii). Prove that there exists a unique $\psi \in \Phi_{a,b}$ such that $\psi(a) = \psi(a+1) = 0$ and $(I P)\psi(x) = g(x)$ for every a < x < b.
- iii). Show that, if $u \in \Phi_{a,b}$ is such that u(a) = u(b) = 0 and (I P)u(x) = 0 for every a < x < b, then $u \equiv 0$.
- iv). Prove that there exists a unique function $u \in \Phi_{a,b}$ satisfying (1).

Pointe)

(4 Points)

(12 Points)

universität**bonn** Ausgabe: 17.04.2012

Abgabe: 24.04.2012

1

(4 Points)

b). Let $u_1 \in \Phi_{a,b}$ be the solution of

$$\begin{cases} (I - P)u_1(x) = 1 & a < x < b \\ u_1(a) = u_1(b) = 0 \end{cases}$$
(2)

Show that, for every $x \in (a, b)$,

$$E_x[u_1(X_{n\wedge\tau})] - u_1(x) = -E_x[n\wedge\tau].$$

Deduce that $E_x[\tau] < \infty$ and that $E_x[\tau] = u_1(x), x \in (a, b)$.

c). Let u be the solution of (1). Show that, for every $x \in (a, b)$,

$$u(x) = \alpha P_x(X_\tau = a) + \beta P_x(X_\tau = b) + E_x \left[\sum_{k=0}^{\tau-1} g(X_k)\right].$$

d). (Computation of Moments)

Let us assume for the time being that for every s > 0 and every x, $E_x[\tau^s] < \infty$. Let us set $u_s(x) = E_x(\tau^s)$.

- i). Show that, for every $x \in (a, b)$, $\tau = 1 + \tau \circ \theta_1 P_x$ -a.s.
- ii). Prove that u_2 is a solution of (1) for some α, β and g to be determined as functions of u_1 . Respectively, prove that u_3 is a solution of (1) for some α, β and g to be determined as functions of u_1 and u_2 .

Sum: 20 Points