Institut für Angewandte Mathematik
 Markov Processes

Prof. Dr. A. Bovier / Dr. E. Petrou

Exercise sheet 2

Exercise 1

(4 Points)
Consider the continuous time Markov chain with state space $S=\{0,1\}$ and generator G

$$
G=\left(\begin{array}{cc}
-\alpha & \alpha \\
\beta & -\beta
\end{array}\right)
$$

where $\alpha, \beta>0$. Find the corresponding transition function.

Exercise 2

(4 Points)
Let (E, \mathcal{E}) be a Polish space endowed with its Borel σ-algebra. Let $\pi=\pi^{1}$ be a transition kernel on (E, \mathcal{E}) and define inductively

$$
\pi^{n}(x, B)=\int_{E} \pi(x, d y) \pi^{n-1}(y, B)
$$

for $x \in E$ and $B \in \mathcal{E}$. Prove that for any $t \geq 0$

$$
P_{t}(x, B)=e^{-t} \sum_{n=0}^{\infty} \frac{t^{n}}{n!} \pi^{n}(x, B)
$$

defines a transition function and describe the corresponding Markov process.

Exercise 3

(12 Points)
Let X be a discrete time Markov chain on \mathbb{Z} associated to the transition matrix Q given by

$$
P(x, x+1)=p, P(x, x)=r, P(x, x-1)=q
$$

where $p+r+q=1, p>0, q>0, r \geq 0$. We set $\rho=\frac{q}{p}$.
Fix $a, b \in \mathbb{Z}$, such that $a<b-1$ and denote by $\tau=\inf \left\{n \geq 0: X_{n} \notin(a, b)\right\}$ the hitting time in $\{a+1, a+2, \ldots, b-1\}^{c}$. Let $\Phi_{a, b}$ be the set of applications from $\{a, a+1, \ldots, b\}$ into \mathbb{R}.
a). In the following we prove that, if $g \in \Phi_{a, b}$, the system

$$
\begin{cases}(I-P) u(x)=g(x) & a<x<b \tag{1}\\ u(a)=\alpha, & u(b)=\beta\end{cases}
$$

has a unique solution for every $\alpha, \beta \in \mathbb{R}$.
i). Prove that there exists a unique $\phi \in \Phi_{a, b}$ such that $\phi(a)=0, \phi(a+1)=1,(I-P) \phi(x)=0$ for every $a<x<b$, and that such a ϕ is strictly increasing.
ii). Prove that there exists a unique $\psi \in \Phi_{a, b}$ such that $\psi(a)=\psi(a+1)=0$ and $(I-P) \psi(x)=$ $g(x)$ for every $a<x<b$.
iii). Show that, if $u \in \Phi_{a, b}$ is such that $u(a)=u(b)=0$ and $(I-P) u(x)=0$ for every $a<x<b$, then $u \equiv 0$.
iv). Prove that there exists a unique function $u \in \Phi_{a, b}$ satisfying (1).
b). Let $u_{1} \in \Phi_{a, b}$ be the solution of

$$
\left\{\begin{array}{l}
(I-P) u_{1}(x)=1 \quad a<x<b \tag{2}\\
u_{1}(a)=u_{1}(b)=0
\end{array}\right.
$$

Show that, for every $x \in(a, b)$,

$$
E_{x}\left[u_{1}\left(X_{n \wedge \tau}\right)\right]-u_{1}(x)=-E_{x}[n \wedge \tau] .
$$

Deduce that $E_{x}[\tau]<\infty$ and that $E_{x}[\tau]=u_{1}(x), x \in(a, b)$.
c). Let u be the solution of (1). Show that, for every $x \in(a, b)$,

$$
u(x)=\alpha P_{x}\left(X_{\tau}=a\right)+\beta P_{x}\left(X_{\tau}=b\right)+E_{x}\left[\sum_{k=0}^{\tau-1} g\left(X_{k}\right)\right] .
$$

d). (Computation of Moments)

Let us assume for the time being that for every $s>0$ and every $x, E_{x}\left[\tau^{s}\right]<\infty$. Let us set $u_{s}(x)=$ $E_{x}\left(\tau^{s}\right)$.
i). Show that, for every $x \in(a, b), \tau=1+\tau \circ \theta_{1} P_{x}$-a.s.
ii). Prove that u_{2} is a solution of (1) for some α, β and g to be determined as functions of u_{1}. Respectively, prove that u_{3} is a solution of (1) for some α, β and g to be determined as functions of u_{1} and u_{2}.

Sum: 20 Points

