Institut für Angewandte Mathematik
 Markov Processes

Prof. Dr. A. Bovier / Dr. E. Petrou

Exercise sheet 1

Ausgabe: 10.04.2012
Abgabe: 17.04.2012

Exercise 1

(- Points)
Let (S, \mathcal{B}) be a Polish space and let \mathcal{P} be a transition kernel(see Definition 1.1) and P_{0} a probability measure on (S, \mathcal{B}). Prove that there exists a unique a discrete time Markov process with transition kernel \mathcal{P} and $\mathbb{P}\left(X_{0} \in A\right)=\mathbb{P}_{0}(A)$, for all $A \in \mathcal{B}$.
Hint: Use Kolmogorov's extension Theorem.

Exercise 2

(3 Points)
Show by example that a function $f\left(X_{0}\right), f\left(X_{1}\right), \ldots$ of a Markov chain need not be a Markov chain.

Exercise 3

(5 Points)
Consider a simple random walk on $\{-N,-N+1, \ldots, N\}$. Assume we want to condition this process on hitting $+N$ before $-N$. Then let

$$
h(x)=\mathbb{P}_{x}\left[\tau_{N}=\tau_{\{N\} \cup\{-N\}}\right]=\mathbb{P}_{x}\left[\tau_{N}<\tau_{-N}\right] .
$$

Compute $h(x)$ and use this to compute the transition rates of the h-transformed walk.

Exercise 4

(12 Points)
Let X be Markov Process on a countable set S, with transition matrix P.
(a). Let f be a positive function on S. For $B \subset S$, let I_{B} be a matrix such that

$$
I_{B}(x, x)=1 \text { if } x \in B, \quad I_{B}(x, x)=0 \text { if } x \in B^{c}, \quad I_{B}(x, y)=0 \text { if } x \neq y
$$

i). Show that

$$
I_{B} f(x)=\mathbf{1}_{B}(x) f(x) \text { and }\left(I_{B} P\right) f(x)=E_{x}\left[\mathbf{1}_{B}\left(X_{0}\right) f\left(X_{1}\right)\right]
$$

ii). Show that, for every $n \geq 1$

$$
\left(I_{B} P\right)^{n} f(x)=E_{x}\left[\mathbf{1}_{B}\left(X_{0}\right) \mathbf{1}_{B}\left(X_{1}\right) \ldots \mathbf{1}_{B}\left(X_{n-1}\right) f\left(X_{n}\right)\right]
$$

b). Let $A \subset S$ and $\tau=\inf \left\{n \geq 0: X_{n} \in A\right\}$. We define

$$
P_{A} f(x)=E_{x}\left[\mathbf{1}_{\tau<\infty} f\left(X_{\tau}\right)\right], \quad U_{A} f(x)=\mathbf{1}_{A^{c}} E_{x}\left[\sum_{n=0}^{\tau-1} f\left(X_{n}\right)\right]
$$

for non-negative functions f on S.
i). Show that, for every $n \geq 0$,

$$
E_{x}\left[\mathbf{1}_{\tau=n} f\left(X_{n}\right)\right]=\left(I_{A^{c}} P\right)^{n} I_{A} f(x)
$$

and deduce that

$$
P_{A}=\sum_{n \geq 0}\left(I_{A^{c}} P\right)^{n} I_{A}
$$

ii). Show that, for every $n \geq 0$,

$$
E_{x}\left[\mathbf{1}_{\tau>n} f\left(X_{n}\right)\right]=\left(I_{A^{c}} P\right)^{n} I_{A^{c}} f(x)
$$

and deduce that

$$
U_{A}=\sum_{n \geq 0}\left(I_{A^{c}} P\right)^{n} I_{A^{c}}=\sum_{n \geq 0} I_{A^{c}}\left(I_{A^{c}} P\right)^{n} .
$$

c). Show that

$$
P_{A}=I_{A}+I_{A^{c}} P P_{A}, \quad U_{A}=I_{A^{c}}+I_{A^{c}} P U_{A}
$$

d). Let g and h be positive functions on S. We set

$$
u=P_{A} g+U_{A} h
$$

i). Show that $u=I_{A} g+I_{A^{c}}(h+P u)$ and derive that u satisfies

$$
u(x)= \begin{cases}g(x) & \text { on } A \tag{1}\\ h(x)+P u(x) & \text { on } A^{c}\end{cases}
$$

ii). Let v be another solution of (1). Show that, for every $n \geq 0$,

$$
v \geq \sum_{k=0}^{n}\left(I_{A^{c}} P\right)^{k}\left(I_{A} g+I_{A^{c}} h\right)
$$

and deduce that $v \geq u$.
iii). Show that $u(x)=E_{x}[\tau]$ is the smallest positive solution of

$$
u(x)= \begin{cases}0 & \text { on } A \\ 1+P u(x) & \text { on } A^{c}\end{cases}
$$

Sum: 20 Points

