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178 A. Bovier

1 Introduction

In these lectures we will discuss Markov processes with a particular
interest for a phenomenon called metastability. Basically this refers to
the existence of two or more time-scales over which the system shows
very different behaviour: on the short time scale, the systems reaches
quickly a “pseudo-equilibrium” and remains effectively in a restricted
subset of the available phase space; the particular pseudo-equilibrium
that is reached will depend on the initial conditions. However, when
observed on the longer time scale, one will occasionally observe transi-
tions from one such pseudo-equilibrium to another one. In many cases
(as we will see) there exists one particular time scale for each such
pseudo-equilibrium; in other cases of interest, several, or even many,
such distinct pseudo-equilibria exist having the same time scale of exit.
Mathematically speaking, our interest is to derive the (statistical) prop-
erties of the process on these long time scales from the given descrip-
tion of the process on the microscopic time scale. In principle, our aim
should be an effective model for the motion at the long time scale on
a coarse grained state space; in fact, disregarding fast motion leads us
naturally to consider a reduced state space that may be labeled in some
way by the quasi-equilibria.

The type of situation we sketched above occurs in many situations in
nature. The classical example is of course the phenomenon of metasta-
bility in phase transitions: if a (sufficiently pure) container of water is
cooled below freezing temperature, it may remain in the liquid state for
a rather long period of time, but at some moment the entire container
freezes extremely rapidly. In reality, this moment is of course mostly
triggered by some slight external perturbation. Another example of
the same phenomenon occurs in the dynamics of large bio-molecules,
such as proteins. Such molecules frequently have several possible spa-
tial conformations, transitions between which occur sporadically on
often very long time scales. Another classical example is metastability
in chemical reactions. Here reactants oscillate between several possi-
ble chemical compositions, sometimes nicely distinguished by different
colours. This example was instrumental in the development of stochas-
tic models for metastability by Eyring, Kramers and others [21, 30].
Today, metastable effects are invoked to explain a variety of diverse
phenomena such as changes in global climate systems both on earth
(ice-ages) and on Mars (liquid water presence), structural transitions
on eco- and oeco systems, to name just a few examples.

Most modeling approaches attribute metastability to the presence
of some sort of randomness in the underlying dynamics. Indeed, in
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Metastability 179

the context of purely deterministic systems, once several equilibrium
positions for the dynamics exist, transitions between such equilibria
are impossible. It is then thought that metastable effects occur due to
the presence of (small) random perturbations that should reflect the
influence of unresolved degrees of freedom on very fast scales.

Mathematically, metastability is studied in a number of contexts of
which we mention the following:

(i) Small random perturbations of dynamical systems. Here
one considers a classical dynamical system in Rd with some added
small stochastic noise term. This leads to a stochastic differential
equation of the type

dxε(t) = fε(xε(t))dt+
√
εgε(xε(t))dW (t) (1.1)

Such systems have been extensively investigated e.g. in the work
of Freidlin and Wentzell [23] and Kifer [28]. They have their origin
in the work of Kramers [30].

(ii) Markov chains with exponentially small transition rates.
Here we are dealing with Markov chains with discrete state space
that are almost deterministic in the sense that the transition prob-
abilities are either exponentially close to one or exponentially close
to zero, in some small parameter ε. Such systems emerge in the
analysis of Wentzell and Freidlin and are studied there. They found
renewed interest in the context of low temperature dynamics for
lattice models in statistical mechanics [35, 36, 1] and also in the
analysis of stochastic algorithms for the solution of optimisation
problems (“simulated annealing”) [14, 13]. Recent result using the
methods outlined here can be found in [11, 6].

(iii) Glauber dynamics of mean field [12, 32, 22, 7] or lattice
[37] spin systems. Metastability in stochastic dynamics of spin
systems is not restricted to the zero temperature limit, but hap-
pens whenever there is a first order phases transition. At finite
temperature, this is much harder to analyse in general. The rea-
son is that it is no longer true that the process on the micro-scale
is close to deterministic, but that such a statement may at best
be meaningful on a coarse grained scale. Mean field models lend
themselves to such a coarse graining in a particularly nice way,
and in many cases it is possible to construct an effective coarse
grained Markovian dynamics that then is in some sense similar to
the problems mentioned in (i).
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180 A. Bovier

The traditional methods to analyse such systems are

(a) Large deviations. Wentzell and Freidlin introduced the method
of large deviations on path space in order to obtain a rigorous
analysis of the probability for the deviations of solutions of the
stochastic differential equations (1.1) from the solutions of the de-
terministic limiting equations. This method has proven very robust
and has been adapted to all of the other contexts. The price to pay
for generality is limited precision. In general, only the exponential
rates of probabilities can be computed precisely. Frequently this is
good enough in applications, but sometimes more precise results
are desirable. In certain cases, refined estimates could, however, be
obtained [19].

(b) Asymptotic perturbation theory. As we will see in detail in the
course of these lectures, many key quantities of interest concern-
ing Markov processes can be characterized as solutions of certain
systems of linear equations, that are, or are structurally similar to,
boundary value problems in partial differential equations. In par-
ticular cases of stochastic differential equations with small noise,
or discrete versions thereof, one may use methods from perturba-
tion theory of linear differential operators with the variance of the
noise playing the rôle of a small parameter. This has been used
widely in the physics literature on the subject (see e.g. the book
by Kolokoltsov [29] for detailed discussions and further reference),
however, due to certain analytic difficulties, with the exception of
some very particular cases, a rigorous justification of these meth-
ods was not given. A further shortcoming of the method is that it
depends heavily on the particular types of Markov processes stud-
ied and does not seem to be universally applicable. Very recently,
Helffer, Nier and Klein have been able to develop a new analytic
approach that allows to develop rigorous asymptotic expansion for
the small eigenvalues for diffusion processes [26, 25, 34].

(c) Spectral and variational methods. Very early on it was noted
that there should be a clear signature of metastability in the nature
of the generator (or transition matrix) of the Markov process con-
sidered. To see this, note that if the Markov process was effectively
reducible, i.e. had instead of quasi invariant sets there were truly in-
variant sets, then the generator would have a degenerate eigenvalue
zero with multiplicity equal to the number of invariant sets. More-
over, the eigenfunctions could be chosen as the indicator functions
of these sets. It is natural to believe that a perturbed version of this
picture remains true in the metastable setting. The computation
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Metastability 181

of small eigenvalues and “spectral gaps” has thus been a frequent
theme in the subject. Computations of eigenvalues can be done
using variational representations of eigenvalues, and a number of
rather precise results could be achieved in this way, e.g. in the work
of Mathieu [31] and Miclo [33].

In these lectures I will explain an approach to metastability that
is in some sense mixing ideas from (ii) and (iii) and that proves to be
applicable in a wide variety of situations. One of its goals is to obtain
a precise characterization of metastability in terms of spectral char-
acteristics, and in particular a quantitatively precise relation between
eigenvalues and physical quantities such as exit times from metastable
domains. The main novel idea in this approach, that was developed in
collaboration with M. Eckhoff, V. Gayrard, and M. Klein over the last
years [7, 8, 9, 10] (see also the reviews [3, 4]) is the systematic use of
the so called “Newtonian capacity”, a fundamental object in potential
theory, and its variational representation. This will allow us to get in a
rigorous way results that are almost as precise as those obtained from
perturbation theory in a rather general context. In particular, we will
see that certain structural relations between capacities, exit times and
spectral characteristics hold without further model assumptions under
some reasonable assumptions on what is to be understood by the notion
of metastability.

In these lectures I will focus on the general methodology of this
approach. In Sections 3 and 4 I outline the universal relations between
capacity and metastable exit times in the context of discrete Markov
chains (where this approach is fully developed), and in the same context
the relation to spectral theory is explained in Section 6. These results
are “model independent”, in certain sense. To apply these to specific
models, one needs to compute certain capacities. Here, too, we have
developed a rather clear strategy of how to do this, which is explained
in Section 6 and exemplified in the case of the Curie-Weiss model.

The real test of any method comes when it is applied in non-trivial
examples. The lecture notes of Frank den Hollander in this volume [20]
present some of these in the context of Glauber and Kawasaki dynamics
of lattice gases. Besides apparent successes, there remain many chal-
lenges and some directions of ongoing research will be exposed in his
lectures.

Acknowledgment. The results described in these lectures outline the
approach to metastability developed in collaboration with M. Eckhoff,
V. Gayrard, and M. Klein, and further elaborated with A. Bianchi,
D. Ioffe, F. den Hollander, F. Manzo, F. Nardi, and C. Spitoni.
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182 A. Bovier

Section 5.4 contains unpublished material based on a collaboration
with A. Bianchi and D. Ioffe. This research is supported in part by
the German Research Council in the Dutch-German Bilateral Research
Group “Random Spatial Models from Physics and Biology”.

2 Basic Notions from the Theory of Markov Processes

A stochastic process {Xt}t∈I , Xt ∈ Γ is called a Markov process with
index set I and state space Γ , if, for any collection t1 < · · · < tn < t∈I,

P [Xt ∈ A|Xtn = xn, . . . , Xt1 = x1] = P [Xt ∈ A|Xtn = xn] (2.1)

for any Borel set A ∈ B(Γ ). Here I is always an ordered set, in fact
either N or R. In the former case we call call the process a discrete
time Markov chain, the second case is referred to as a continuous time
Markov process. A further distinction concerns the nature of the state
space Γ . This may be finite, countable, or uncountable (‘continuous’).

A key quantity in all cases is the family of probability measures,
p(s, t, x, ·), on (Γ,B(Γ )),

p(s, t, x,A) ≡ P (Xt ∈ A|Xs = x) , (2.2)

for any Borel set A ∈ B(Γ ). By (2.1), p(t, s, x, ·) determines uniquely
the law of the Markov process. In fact, any family of probability mea-
sures p(s, t, x, ·) satisfying

p(s, s, x, ·) = δx(·) (2.3)

and the relation for s < t′ < t,

p(s, t, x, ·) =
∫
p(s, t′, x, dz)p(t′, t, z, ·) (2.4)

defines a Markov process. If p(s, t, x, ·) is a function of t − s only, we
call the Markov process time-homogeneous and set

p(s, t, x, ·) ≡ pt−s(x, ·) (2.5)

We will only be concerned with time-homogeneous Markov processes
henceforth. In the case of discrete time the transition kernel is fully
determined by the one-step transition probabilities, called transition
matrix in the discrete space case,

p(x, ·) ≡ p1(x, ·) (2.6)
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Metastability 183

If space is discrete, we can of course simply specify the atoms, p(x, y),
of this measure; this object is then called the transition matrix.

Property (2.4) is often called the semi-group property and the tran-
sition kernel pt(x, ·) is called a Markov semi-group. In continuous time,
one defines the generator (of the semi-group)1

L ≡ lim
t↓0
t−1(1− pt) (2.7)

It then follows that conversely

pt = e−tL (2.8)

We will find it sometimes convenient to define a “generator” also in the
discrete time case by setting

L ≡ 1− p1 (2.9)

We will frequently think of pt and L as operators acting on functions
f on Γ as

ptf(x) ≡
∫
Γ
pt(x, dy)f(y) (2.10)

respectively on measures ρ on Γ , via

ρpt(·) ≡
∫
Γ
ρ(dx)pt(x, ·) (2.11)

If ρ0(·) = P(X0 ∈ ·), then

ρ0pt(·) ≡ ρt(·) = P(Xt ∈ ·) (2.12)

ρt is called the law of the process at time t started in ρ at time 0. It is
easy to see from the semi-group property that ρt satisfies the equation

∂

∂t
ρt(x, ·) = −ρtL(x, ·) (2.13)

resp., in the discrete time case

ρt+1(x, ·) = −ρtL(x, ·) (2.14)

This equation is called the Focker-Planck equation. A probability mea-
sure μ on Γ is called an invariant measure for the Markov process Xt
if it is a stationary solution of (2.13), i.e. if

μpt = μ (2.15)

1 In the literature, one usually defines the generator with an extra minus sign.
I prefer to work with positive operators.
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184 A. Bovier

for all t ∈ I. Note that (2.15) is equivalent to demanding that

μL = 0 (2.16)

A priori the natural function space for the action of our operators is
L∞(Γ ) for the action from the left, and locally finite measures for the
action on the right. Given an invariant measure μ, there is, however,
also a natural extension to the space L2(Γ, μ) . In fact, pt is a contrac-
tion on this space, and L is a positive operator. To see this, just use
the Schwartz inequality to show that∫
μ(dx)

(∫
pt(x, dy)f(y)

)2

≤ μ(dx)
∫
pt(x, dy)f(y)2 =

∫
μ(dy)f(y)2

(2.17)

L is in general not a bounded operator in L2, and its domain is some-
times just a dense subspaces.

Within this L2-theory, it is natural to define the adjoint operators
p∗t and L∗ via ∫

μ(dx)g(x)p∗t f(x) ≡
∫
μ(dx)f(x)p∗t g(x) (2.18)

respectively ∫
μ(dx)g(x)L∗f(x) ≡

∫
μ(dx)f(x)Lg(x) (2.19)

for any pair of functions f, g ∈ L2(Γ, μ). We leave it as an exercise to
show that p∗t and L∗ are Markov semi-groups, resp. generators, when-
ever μ is an invariant measure. Thus they define an adjoint or reverse
process. In the course of these lectures we will mainly be concerned
with the situation where pt and L are self-adjoint, i.e. when pt = p∗t
and L = L∗. This will entrain a number of substantial simplifications.
Results on the general case can often be obtained by comparison with
symmetrized processes, e.g. the process generated by (L+L∗)/2. Note
that whenever a Markov generator is self-adjoint with respect to a
measure μ, then this measure is invariant (Exercise!). We call Markov
processes whose generator is self-adjoint with respect to some probabil-
ity measure reversible. The invariant measure is then often called the
reversible measure (although I find this expression abusive; symmetriz-
ing measure would be more appropriate).

Working with reversible Markov chains brings the advantage to
make full use of the theory of self-adjoint operators, which gives far
richer results then in the general case. In many applications one can
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Metastability 185

work by choice with reversible Markov processes, so that in practical
terms this restriction is not too dramatic.

Hitting Times

Henceforth we denote by Px the law of the process conditioned on
X0 = x. For any (measurable) set D ⊂ Γ we define the hitting time
τD as

τD ≡ inf (t > 0 : Xt ∈ D) (2.20)

Note that τD is a stopping time, i.e. the random variable τD depends
only on the behaviour of Xt for t ≤ τD. Denoting by Ft sigma-algebra
generated by {Xs}0≤s≤t, we may say that the event {τD ≤ t} is mea-
surable with respect to Ft.

3 Discrete Space, Discrete Time Markov Chains

We will now turn to our main tools for the analysis of metastable
systems. To avoid technical complications and to focus on the key ideas,
we will first consider only the case of discrete (or even finite) state space
and discrete time (the latter is no restriction). We set p1(x, y) = p(x, y).
We will also assume that our Markov chain is irreducible, i.e. that for
any x, y ∈ Γ , there is t ∈ N such that pt(x, y) > 0. If in addition Γ
is finite, this implies the existence of a unique invariant (probability)
measure μ. We will also assume the our Markov chain is reversible.

3.1 Equilibrium Potential, Equilibrium Measure,
and Capacity

Given two disjoint subsets A,D, of Γ , and x ∈ Γ , we are interested in

Px[τA < τD] (3.1)

One of our first, and as we will see main tasks is to compute such
probabilities. We consider first the case of discrete time and space.

If x �∈ A∪D, we make the elementary observation that the first step
away leads either to D, and the event {τA < τD} fails to happen, or
to A, in which case the event happens, or to another point y �∈ A ∪D,
in which case the event happens with probability Py[τA < τD]. Thus

Px[τA < τD] =
∑
y∈A

p(x, y) +
∑
y �∈A∪D

p(x, y)Py[τA < τD] (3.2)
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186 A. Bovier

We call an equation based on this reasoning a forward equation. Note
that we can write this in a nicer form if we introduce the function

hA,D(x) =

⎧⎪⎨⎪⎩
Px[τA < τD], ifx �∈ A ∪D
1, ifx ∈ A
0, ifx ∈ D

(3.3)

Then (3.2) implies that for x �∈ A ∪D,

hA,D(x) =
∑
y∈Γ

p(x, y)hA,D(y) (3.4)

In other words, the function hA,D solves the boundary value problem

LhA,D(x) = 0, x ∈ Γ\(A ∪D),
hA,D(x) = 1, x ∈ A,
hA,D(x) = 0, x ∈ D. (3.5)

If we can show that the problem (3.3) has a unique solution, then we
can be sure to have reduced the problem of computing probabilities
Px[τA < τD] to a problem of linear algebra.

Proposition 3.1. Let Γ be a finite set, and let A,D ⊂ Γ be non-
empty. Assume that P is irreducible, i.e. that for any x, y ∈ Γ , there
exists n < ∞ such that pn(x, y) > 0. Then the problem (3.3) has a
unique solution.

The function hA,D is called the equilibrium potential of the capacitor
A,B. The fact that

Px[τA < τD] = hA,D(x) (3.6)

for x ∈ Γ\(A∪D) is the first fundamental relation between the theory
of Markov chains and potential theory.

The next question is what happens for x ∈ D? Naturally, using the
same reasoning as the one leading to (3.2), we obtain that

Px[τA < τD] =
∑
y∈A

p(x, y) +
∑

y∈Γ\(A∪D)

p(x, y)Py[τA < τD]

=
∑
y∈Γ

p(x, y)hA,D(y) (3.7)

It will be even more convenient to define, for all x ∈ Γ

eA,D(x) ≡ −(LhA,D)(x) (3.8)
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Metastability 187

Then

Px[τA < τD] =

⎧⎪⎨⎪⎩
hA,D(x), ifx ∈ Γ\(A ∪D)
eA,D(x), ifx ∈ D
1− eD,A(x) ifx ∈ A

(3.9)

Let us now define the capacity of the capacitor A,D as

cap(A,D) ≡
∑
x∈D

μ(x)eA,D(x) (3.10)

By the properties of hA,D it is easy to see that we can write∑
x∈D

μ(x)eA,D(x) =
∑
x∈Γ

μ(x)(1− hA,D(x))(−LhA,,D)(x) (3.11)

=
∑
x∈Γ

μ(x)hA,D(x)(LhA,,D)(x)−
∑
x∈Γ

μ(x)(LhA,,D)(x)

Since μ(x)L = 0, we get that

cap(A,D) =
∑
x∈Γ

μ(x)hA,D(x)(LhA,,D)(x) ≡ Φ(hA,D) (3.12)

where

Φ(h) ≡
∑
x∈Γ

μ(x)h(x)Lh(x) =
1
2

∑
x,y

μ(x)p(x, y) (h(x)− h(y))2 (3.13)

is called the Dirichlet form associated to the Markov process with gen-
erator L. In fact, we will sometimes think of the Dirichlet form as the
quadratic form associated to the generator and write

Φ(f, g) ≡ (f, Lg)μ =
1
2

∑
x,y

μ(x)p(x, y) (f(x)− f(y)) (g(x)− g(y)) .

(3.14)

The representation of the capacity in terms of the Dirichlet form will
turn out to be of fundamental importance. The reason for this is the
ensuing variational representation, known as the Dirichlet principle:

Theorem 3.1. Let HAD denote the space of functions

HAD ≡ (h : Γ → [0, 1], h(x) = 1, x ∈ A, h(x) = 0, x ∈ D) (3.15)

Then
cap(A,D) = inf

h∈HA
D

Φ(h) (3.16)

Moreover, the variational problem (3.15) has a unique minimizer that
is given by the equilibrium potential hA,D.
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188 A. Bovier

Proof. Differentiating Φ(h) with respect to h(x) (for x ∈ Γ\(A ∪ D))
yields

∂

∂h(x)
Φ(h) = 2μ(x)Lh(x) (3.17)

Thus if h minimizes Φ, it must be true that Lh(x) = 0. Since we have
already seen that the Dirichlet problem (3.3) has a unique solution, the
theorem is proven.

While in general the capacity is a weighted sum over certain prob-
abilities, if we choose for the set D just a point x ∈ Γ , we get that

Px[τA < τx] =
1
μ(x)

cap(A, x)

We will call these quantities sometimes escape probabilities. We see that
they have, by virtue of Theorem 3.1 a direct variational representation.
They play a crucial rôle in what will follow. Let us note the fact that
cap(x, y) = cap(y, x) implies that

μ(x)Px[τy < τx] = μ(y)Py[τx < τy] (3.18)

which is sometimes helpful to get intuition. Note that this implies in
particular that

Px[τy < τx] ≤
μ(y)
μ(x)

which is quite often already a useful bound (provided of course μ(y) <
μ(x)).

3.2 The One-Dimensional Chain

We will now consider the example of a one-dimensional nearest neighbor
random walk (with inhomogeneous rates). For reasons that will become
clear later, we introduce a parameter ε > 0 and think of our state space
as a one-dimensional “lattice” of spacing ε, that is we take Γ ⊂ εZ, and
transition probabilities

p(x, y) =

⎧⎪⎪⎨⎪⎪⎩
√
μ(y)
μ(x)g(x, y), if y = x± ε,

1− p(x, x+ ε)− p(x, x− ε), ifx = y,
0, else

(3.19)

where μ(x) > 0, and g is such that p(x, x) ≥ 0.
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Metastability 189

Equilibrium Potential.

Due to the one-dimensional nature of our process, we only equilibrium
potentials we have to compute are of the form

hb,a(x) = Px[τb < τa] (3.20)

where a < x < b. The equations (3.5) then reduce to the one-
dimensional discrete boundary value problem

p(x, x+ ε)(h(x+ ε)−h(x))+p(x, x− ε)(h(x− ε)−h(x)) = 0, a < x < b
h(a) = 0
h(b) = 1

We can solve this by recursion and get

h(x) =

∑x
y=a+ε

1
μ(y)

1
p(y,y−ε)∑b

y=a+ε
1
μ(y)

1
p(y,y−ε)

(3.21)

Capacities.

Given the explicit formula for the equilibrium potential, we can read-
ily compute capacities. Without going into the detailed computations,
I just quote the result:

cap(a, b) =
1∑b

y=a+ε
1
μ(y)

1
p(y,y−ε)

(3.22)

Remark 3.1. Formula (3.22) suggests another common “electrostatic”
interpretation of capacities, namely as “resistances”. In fact, if we in-
terpret μ(x)p(x, x− ε) = μ(x− ε)p(x− ε, x) as the conductance of the
“link” (resistor) (x−ε, x), then by Ohm’s law, formula (3.22) represents
the conductance of the chain of resistors from a to b. This interpreta-
tion is not restricted to the one-dimensional chain, but holds in general
for reversible Markov chains. The capacity of the capacitor (A,D) may
then be seen as the conductance of the resistor network between the
two sets. In this context, the monotonicity properties of the capacities
obtain a very natural interpretation: removing a resistor or reducing its
conductivity can only decrease the conductivity of the network. There
is a very nice account on the resistor network interpretation of Markov
chains and some of its applications in a book by Doyle and Snell.
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190 A. Bovier

3.3 Mean Hitting Times

Our next task is to derive formulas for the mean values of hitting times
τA. As in Section 3.1 we first derive a forward equation for ExτA by
considering what can happen in the first step:

ExτA =
∑
y∈A

p(x, y) +
∑
y �∈A

p(x, y)(1 + EyτA) (3.23)

if x �∈ A. If we define a function

wA(x) ≡
{

ExτA, ifx ∈ Γ\A
0, ifx ∈ A

(3.24)

we see that (3.23) can be written in the nicer form

wA(x) =
∑
y∈Γ

p(x, y)wA(y) + 1 (3.25)

for x �∈ A; i.e. wA solves the inhomogeneous Dirichlet problem

LwA(x) = 1, x ∈ G\A
wA(x) = 0, x ∈ A (3.26)

Note that for x ∈ A we can compute ExτA by considering the first step:

ExτA =
∑
y∈A

p(x, y) +
∑
y �∈A

p(x, y)(1 + EyτA) (3.27)

or in compact form

ExτA = PwA(x) + 1 = −LwA(x) + 1 (3.28)

Equations (3.26) is a special cases of the general Dirichlet problem

Lf(x) = g(x), x ∈ Γ\A
f(x) = 0, x ∈ A (3.29)

for some set A and some function f . We have seen in Proposition 3.1
that the homogeneous boundary value problem (i.e. if g ≡ 0) has the
unique solution f(x) ≡ 0. This implies that the problem (3.29) has a
unique solution that can (by linearity) be represented in the form

f(x) =
∑
y∈Γ\A

GΓ\A(x, y)g(y) (3.30)
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Of course, GΓ\A is simply the matrix inverse of the matrix LΓ\A whose
elements are

LΓ\A(x, y) = L(x, y), x, y ∈ Γ\A
LΓ\A(x, y) = 0, x ∈ A ∨ y ∈ A (3.31)

We will call LΓ\A the Dirichlet operator on Γ\A. Note that while L
is a positive operator, due to Proposition 3.1, LΓ\A is strictly positive
whenever A �= ∅. The inverse operator GΓ\A(x, y) is usually called the
Green’s function.

We see that we would really like to compute this Green’s function.
What we will actually show now is that the Green’s function can be
computed in terms of equilibrium potentials and equilibrium measures.
To see this, let us return to (3.8) and interpret this as an equation for
hD,A where the boundary conditions are only prescribed on A but not
on D: Note first that since hA,D(x) = 1 − hD,A(x), (3.8) can also be
written as

eA,D(x) = LhD,A(x) (3.32)

With this relation, assuming eA,D given on D, we can re-write the
determining equation for hD,A as an inhomogeneous Dirichlet problem
with boundary conditions only on A:

LhD,A(x) = 0, x ∈ Γ\(A ∪D)
LhD,A(x) = eA,D(x), x ∈ D
hD,A(x) = 0, x ∈ A (3.33)

Thus we can write

hD,A(x) =
∑
y∈D

GΓ\A(x, y)eA,D(y) (3.34)

Let us now consider the special case when D is a single point, say
D = {z}. Then (3.34) gives

hz,A(x) = GΓ\A(x, z)eA,D(z) (3.35)

which gives immediately

GΓ\A(x, z) =
hz,A(x)
eA,D(z)

. (3.36)

Now due to the symmetry of L,

GΓ\A(x, z)μ(x) = GΓ\A(z, x)μ(z) (3.37)
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192 A. Bovier

This gives us

GΓ\A(z, x) =
μ(x)hz,A(x)
μ(z)eA,D(z)

. (3.38)

In conclusion, we have the following useful fact:

Proposition 3.2. The Dirichlet Green’s function for any set A ⊂ G
can be represented in terms of the equilibrium potential and capacities as

GΓ\A(x, z) =
μ(z)hx,A(z)
cap(A, z)

(3.39)

We now get immediately the desired representations for the mean
times:

ExτA =
∑
y∈Γ\A

μ(y)hx,A(y)
cap(A, x)

(3.40)

These formulas will prove to be excessively useful in the sequel.

3.4 Renewal Equations

The application of Proposition 3.2 may not appear very convincing,
as we can actually solve the Dirichlet problems directly. On the other
hand, even if we admit that the Dirichlet variational principle gives us
a good tool to compute the denominator, i.e. the capacity, we still do
not know how to compute the equilibrium potential. We will now show
that a surprisingly simple argument provides a tool that allows us to
reduce, for our purposes, the computation of the equilibrium potential
to that of capacities.

This yields the renewal bound for the equilibrium potential.

Lemma 3.1. Let A,D ⊂ Γ be disjoint, and x ∈ (A ∪D)c. Then

Px[τA < τD] = hA,D(x) ≤ cap(x,A)
cap(x,D)

(3.41)

Proof. The basis of our argument is the trivial observation that if the
process starting at a point x wants to realise the event {τA < τD}, it
may do so by going to A immediately and without returning to x again,
or it may return to x without either going to A or to D. Clearly, once
the process returns to x it is in the same position as at the starting
time, and we can use the (strong) Markov property to separate the
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Metastability 193

probability of what happened before the first return to x to whatever
will happen later. Formally:

Px[τA < τD] = Px[τA < τD∪x] + Px[τx < τA∪D ∧ τA < τD]
= Px[τA < τD∪x] + Px[τx < τA∪D]Px[τA < τD] (3.42)

We call this a renewal equation. We can solve this equation for
Px[τA < τD]:

Px[τA < τD] =
Px[τA < τD∪x]

1− Px[τx < τA∪D]
=

Px[τA < τD∪x]
Px[τA∪D < τx]

(3.43)

By elementary monotonicity properties this representation yields the
bound

Px[τA < τD] ≤ Px[τA < τx]
Px[τD < τx]

=
cap(x,A)
cap(x,D)

(3.44)

Of course this bound is useful only if cap(x,A)
cap(x,D) < 1, but since

Px[τA < τD] = 1− Px[τD < τA], the applicability of this bound is quite
wide. It is quite astonishing how far the simple use of this renewal
bound will take us.

4 Metastability

We come now to a general definition of metastability in the context of
discrete Markov chains.

4.1 Metastable Points

Definition 4.1. Assume that Γ is a discrete set. Then a Markov
processes Xt is metastable with respect to the set of points M⊂ Γ , if

supx∈M Px[τM\x < τx]
infy �∈M Py[τM < τy]

≤ ρ� 1 (4.1)

We will see that Definition 4.1 is (at least if Γ is finite) equivalent
to an alternative definition involving averaged hitting times.

Definition 4.2. Assume that Γ is a finite discrete set. Then a Markov
processes Xt is metastable with respect to the set of points M⊂ Γ , if

infx∈M ExτM\x
supy �∈M EyτM

≥ 1/ρ� 1 (4.2)

We will show that without further assumptions on the particular
properties of the Markov chain we consider, the fact that a set of
metastable states satisfying the condition of Definition 4.1 exists im-
plies a number of structural properties of the chain.
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194 A. Bovier

4.2 Ultrametricity

An important fact that allows to obtain general results under our De-
finition of metastability is the fact that it implies approximate ultra-
metricity of capacities. This has been noted in [8].

Lemma 4.1. Assume that x, y ∈ Γ , D ⊂ Γ . Then, if for 0 < δ < 1
2 ,

cap(x,D) ≤ δcap(y, x), then

1− 2δ
1− δ ≤

cap(x,D)
cap(y,D)

≤ 1
1− δ (4.3)

Proof. The key idea of the proof is to use the probabilistic represen-
tation of capacities and renewal type arguments involving the strong
Markov property. It would be nice to have a purely analytic proof of
this lemma.

We first prove the upper bound. We write

cap(x,D) = cap(D,x) =
∑
z∈D

μ(z)ex,D(z) =
∑
z∈D

μ(z)Pz[τx < τD]

(4.4)
Now

Pz[τx < τD] = Pz[τx < τD, τy < τD] + Pz[τx < τD, τy ≥ τD]
= Pz[τx < τD, τy < τD] + Pz[τx < τD∪y]Px[τD < τy]

= Pz[τx < τD, τy < τD] + Pz[τx < τD∪y]
Px[τD < τy∪x]
Px[τD∪y < τx]

(4.5)

Here we used the Markov property at the optional time τx to split
the second probability into a product, and then the renewal equation
(3.43). Now by assumption,

Px[τD < τy∪x]
Px[τD∪y < τx]

≤ Px[τD < τx]
Px[τy < τx]

≤ δ (4.6)

Inserting (4.6) into (4.5) we arrive at

Pz[τx < τxD] ≤ Pz[τy < τD, τx < τD] + δPz[τx < τD∪y] (4.7)
≤ Pz[τy < τD] + δPz[τx < τD]

Inserting this inequality into (4.4) implies

cap(x,D) ≤
∑
z∈D

μ(z)Pz[τy < τD] + δ
∑
z∈D

μ(z)Pz[τx < τD] (4.8)

= cap(y,D) + δcap(x,D)

which implies the upper bound.
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Metastability 195

The lower bound follows by observing that from the upper bound
we get that cap(x,D) ≤ δ

1−δ cap(x, y). Thus reversing the rôle of x and

y, the resulting upper bound for cap(y,D)
cap(x,D) is precisely the claimed lower

bound.

Lemma 4.1 has the following immediate corollary, which is the ver-
sion of the ultrametric triangle inequality we are looking for:

Corollary 4.1. Let x, y, z ∈M. Then

cap(x, y) ≥ 1
3

min (cap(x, z), cap(y, z)) (4.9)

Valleys. In the sequel it will be useful to have the notion of a “valley”
or “attractor” of a point in M. We set for x ∈M,

A(x) ≡
{
z ∈ Γ |Pz[τx = τM] = sup

y∈M
Pz[τy = τM]

}
(4.10)

Note that valleys may overlap, but from Lemma 4.1 it follows easily
that the intersection has a vanishing invariant mass. The notion of a
valley in the case of a process with invariant measure exp(−f(x)/ε)
coincides with this notion.

More precisely, the next Lemma will show that if y belongs to the
valley of m ∈ M, then either the capacity cap(y,M\m) is essentially
the same as cap(m,M\m), or the invariant mass of y is excessively
small. That is to say that within each valley there is a subset that “lies
below the barrier defined by the capacity cap(m,M\m), while the rest
has virtually no mass, i.e. the process never really gets there.

Lemma 4.2. Let m ∈M, y ∈ A(m), and D ⊂M\m. Then either

1
2
≤ cap(m,D)

cap(y,D)
≤ 3

2

or
μ(y) ≤ 3|M| μ(y)

cap(y,M)
cap(m,D)

Proof. Lemma 4.1 implies that if cap(m, y) ≥ 3cap(m,D), then (4.2)
holds. Otherwise,

μ(y)
μ(m)

≤ 3
μ(y)

cap(y,m)
cap(m,D)
μ(m)

(4.11)
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196 A. Bovier

Since y ∈ A(m), we have that Py [τm ≤ τM] ≥ 1/|M|. On the other
hand, the renewal estimate yields

Py [τm ≤ τM] ≤ cap(y,m)
cap(y,M)

(4.12)

Hence
cap(y,M) ≤ |M|cap(y,m) (4.13)

which yields (4.2).

4.3 Mean Hitting Times

We will now derive a very convenient expression for the mean time
of arrival in a subset J ⊂ M of the metastable points. This will be
based on our general representation formula for mean arrival times
(3.40) together with the renewal based inequality for the equilibrium
potential and the ultrametric inequalities for the capacities that we just
derived under the hypothesis of Definition 4.1.

Let x ∈ M, x �∈ J ⊂ M. We want to compute ExτJ . Our starting
point is the following equation, that is immediate from (3.40)

ExτJ =
μ(x)

cap(x, J)

∑
y∈Jc

μ(y)
μ(x)

hx,J\x(y) (4.14)

We want to estimate the summands in the sum (4.14). We will set

a ≡ inf
y
μ(y)−1cap(y,M). (4.15)

The following lemma provides the necessary control over the equilib-
rium potentials appearing in the sum.

Lemma 4.3. Let x ∈M and J ⊂M with x �∈ J . Then:

(i) If x = m, either

hx,J(y) ≥ 1− 3
2
|M|a−1 cap(x, J)

μ(y)
(4.16)

or
μ(y) ≤ 3|M|a−1cap(m,J) (4.17)
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(ii) If m ∈ J , then

μ(y)hx,J(y) ≤
3
2
|M|a−1cap(m,x) (4.18)

(iii) If m �∈ J ∪ x, then either

hx,J(y) ≤ 3
cap(m,x)
cap(m,J)

(4.19)

and

hx,J(y) ≥ 1− 3
cap(m,J)
cap(m,x)

(4.20)

or
μ(y) ≤ 3|M|a−1 max (cap(m,J), cap(m,x)) (4.21)

We will skip the somewhat tedious proof of this lemma. With its help
one can give rather precise expressions for the mean hitting times (4.14)
that only involve capacities and the invariant measure. We will only
consider a special case of particular interest, namely when J contains all
points inM that ‘lie lower than’ x, i.e. if J = Mx ≡ {m ∈M : μ(m) ≥
δμ(x)}, for some δ � 1 to be chosen. We will call the corresponding
time τMx the metastable exit time from x. In fact, it is reasonable to
consider this the time when the process has definitely left x, since the
mean time to return to x from Mx is definitely larger than (or at most
equal in degenerate cases) ExτMx . Nicely enough, these mean times
can be computed very precisely:

Theorem 4.1. Let x ∈ M and J ⊂ M\x be such a that for all m �∈
J ∪ x either μ(m) � μ(x) or cap(m,J) � cap(m,x), then

ExτJ =
μ(A(x))
cap(x, J)

(1 +O(ρ)) (4.22)

Proof. Left to the reader.

Finally we want to compute the mean time to reach M starting
from a general point.

Lemma 4.4. Let z �∈ M. Then

EzτM ≤ a−2 (|{y : μ(y) ≥ μ(z)|}+ C) (4.23)
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Proof. Using Lemma 4.2, we get that

EzτM ≤ μ(z)
cap(z,M)

∑
y∈Mc

μ(y)
μ(z)

max
(

1,
cap(y, z)

cap(y,M)

)

=
μ(z)

cap(z,M)

∑
y∈Mc

μ(y)
μ(z)

max
(

1,
Py[τz < τy]
Py[τM < τy]

)

≤ sup
y∈Mc

(
μ(y)

cap(y,M)

)2 ∑
y∈Mc

max
(
μ(y)
μ(z)

,Pz[τy < τz]
)

≤ sup
y∈Mc

(
μ(y)

cap(y,M)

)2
⎛⎝ ∑
y:μ(y)≤μ(z)

μ(y)
μ(z)

+
∑

y:μ(y)>μ(z)

1

⎞⎠
≤ sup
y∈Mc

(
μ(y)

cap(y,M)

)2

(C + |{y : μ(y) > μ(z)}|) (4.24)

which proves the lemma.

Remark 4.1. If Γ is finite (resp. not growing too fast with ε), the above
estimate combined with Theorem 4.1 shows that the two definitions of
metastability we have given in terms of mean times rep. capacities are
equivalent. On the other hand, in the case of infinite state space Γ , we
cannot expect the supremum over EzτM to be finite, which shows that
our second definition is less suitable than the first.

5 Upper and Lower Bounds for Capacities

In this lecture we will introduce some powerful, though simple ideas
that allow to compute upper and lower bounds for capacities that are
relevant for metastability. We will do this with a concrete model, the
Glauber dynamics for the Curie-Weiss model, at hand, but the methods
we will use are also applicable in other situations.

Let me therefore first of all recall this model and its dynamics.

5.1 The Curie-Weiss Model

The Curie-Weiss model is the simplest model for a ferromagnet. Here
the state space is the hypercube SN ≡ {−1, 1}N , and the Hamiltonian
of the Curie–Weiss model is

HN (σ) = − 1
2N

∑
1≤i,j≤N

σiσj − h
N∑
i=1

σi (5.1)
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The crucial feature of the model is that the Hamiltonian is a function
of the macroscopic variable, the magnetization as a function on the
configuration space: we will call

mN (σ) ≡ N−1
N∑
i=1

σi (5.2)

the empirical magnetization. Here we divided by N to have a specific
magnetization. A function of this type is called a macroscopic function,
because it depends on all spin variables. We can indeed write

HN (σ) = −N
2

[mN (σ)]2 − hNmN (σ) ≡ −NEh(mN (σ)) (5.3)

The computation of the partition function is then very easy: We
write

Zβ,h,N =
∑

m∈MN

eNβ(
m2

2
+mh)zm,N (5.4)

where MN is the set of possible values of the magnetization, i.e.,

MN ≡ {m ∈ R : ∃σ ∈ {−1, 1}N : mN (σ) = m} (5.5)
= {−1,−1 + 2/N, . . . , 1− 2/N, 1}

and
zm,N ≡

∑
σ∈{−1,1}N

1ImN (σ)=m (5.6)

is a ‘micro-canonical partition function’. Fortunately, the computation
of this micro-canonical partition function is easy. In fact, all possible
values of m are of the form m = 1− 2k/N , and for these

zm,N =
(

N

N(1−m)/2

)
≡ N !

[N(1−m)/2]![N(1 +m)/2]!
(5.7)

It is always useful to know the asymptotics of the logarithm of the
binomial coefficients. If we set, for m ∈MN

N−1 ln zm,N ≡ ln 2− IN (m) ≡ ln 2− I(m)− JN (m) (5.8)

where
I(m) =

1 +m
2

ln(1 +m) +
1−m

2
ln(1−m) (5.9)
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then

JN (m) =
1

2N
ln

1−m2

4
+

lnN + ln(2π)
2N

+ O
(
N−2

( 1
1−m +

1
1 +m

))
(5.10)

(5.10) is obtained using the asymptotic expansion for the logarithm
of the Gamma function. The function I(x) is called Cramèr’s entropy
function and worth memorizing. Note that by its nature it is a relative
entropy. The function JN is of lesser importance, since it is very small.

The Gibbs measure is then

μβ,N ≡
exp

(
βN

[
mN (σ)2/2 + hmN (σ)

])
Zβ,N

. (5.11)

an important role is played by the measure induced by the map mN ,

Qβ,N (m) ≡ μβ,N ◦m−1
N (m) =

exp (−βN [−Eh(m)]−NIN (m))
2NZβ,N

.

(5.12)
Note that this measure concentrates sharply, as N goes to infinity, on
the minimizers of the function Fβ,N ≡ −Eh(m) + β−1I(m).

5.2 Glauber Dynamics

Typical dynamics studied for such models are Glauber dynamics,
i.e. (random) Markov chains σ(t), defined on the configuration space
SN that are reversible with respect to the (random) Gibbs measures
μβ,N (σ) and in which the transition rates are non-zero only if the fi-
nal configuration can be obtained from the initial one by changing the
value of one spin only. A particular choice of transition rates are given
by the Metropolis algorithm:

pN (σ, σ′) ≡

⎧⎪⎨⎪⎩
0, if ‖σ − σ′‖ > 2,
1
N e

−β[HN (σ′)−HN (σ)]+ , if ‖σ − σ′‖ = 2,
1− 1

N

∑
τ :‖τ−σ‖=2 e

−β[HN (σ′)−HN (σ)]+ , ifσ = σ′.
(5.13)

Here [f ]+ ≡ max(f, 0).
There is a simple way of analysing this dynamics which is based

on the observation that in this particular model, if σ(t) is the Markov
process with the above transition rates, then the stochastic process
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m̃N (t) ≡ mN (σ(t)) is again a Markov process with state space MN

and invariant measure Qβ,N .
Here we do not want to follow this course, but we will use more

generally applicable bounds that will, however, reproduce the exact
results in this simple case.

As a first problem that we encounter in this way it the proper defini-
tion of metastable state. Since the invariant (Gibbs) measure is constant
on the sets of configurations with given value of mN , clearly looking for
configurations that are local minima of the energy, HN , is not a good
idea. In fact, since the induced measure Qβ,N has local maxima at the
minima of the function fβ,N , and given the symmetries of the problem,
it seems far more natural to consider as metastable sets the sets

M± ≡ {σ : mN (σ) = m∗
±}, (5.14)

where m∗
± are the largest, respectively smallest local minimizer of

fβ,N (m) = 0.
We may come back to the question whether this is a feasible defini-

tion later. For the moment, we want to see how in such a situation we
can compute the relevant capacity, cap(M+,M−).

5.3 Upper Bounds

Our task is to compute

cap(M+,M−) = inf
h∈H

1
2

∑
σ,τ∈SN

μ(σ)pN (σ, τ) [h(σ)− h(τ)]2 , (5.15)

where

H = {h : ΣN → [0, 1] : h(σ) = 0, σ ∈M+, h(σ) = 1, σ ∈M−} . (5.16)

The general strategy is to prove an upper bound by guessing some a-
priori properties of the minimizer, h, and then to find the minimizers
within this class. There are no limits to one’s imagination here, but of
course some good physical insight will be helpful. The good thing is
that, whatever we will guess here, will be put to the test later when
we will or will not be able to come up with a matching lower bound.
Quite often it is not a bad idea to try to assume that the minimizer
(i.e. the equilibrium potential) depends on σ only through some order
parameter. In our case this can only be the magnetisation, mN (σ). As
a matter of fact, due to symmetry, in our case we can know a priori
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that this will be true for a fact, but, even if it may not be true, it
may give a good bound for the capacity: it is really only necessary that
this assumption holds in those places where the sum in (5.15) gives a
serious contribution!

Let us see where this gets us:

cap(M+,M−) = inf
g∈H̃

1
2

∑
σ,τ∈SN

μ(σ)pN (σ, τ) [g(mN (σ))− g(mN (τ))]2 ,

(5.17)
where

H̃ =
{
g : [−1, 1]→ [0, 1] : g(m∗

−) = 0, g(m∗
+) = 1

}
. (5.18)

But

1
2

∑
σ,τ∈SN

μ(σ)pN (σ, τ) [g(mN (σ))− g(mN (τ))]2 (5.19)

=
1
2

∑
m,m′

[g(m)− g(m′)]2
∑

σ:mN (σ)=m,τ :mN (τ)=m′

μ(σ)pN (σ, τ)

=
1
2

∑
m,m′

Qβ,N (m)rN (m.m′)[g(m)− g(m′)]2,

where

rN (x, y) ≡ 1
Qβ,N (x)

∑
σ:mn(σ)=x

∑
τ :mN (τ)=y

μβ,N (σ)pN (σ, τ) (5.20)

In our special case of the Metropolis dynamics, pN (σ, τ) depends only
on mN (σ) and mN (τ)

rN (x, y)=

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

0, if |x− y|>2/N,
(1− x)/2 exp(−βN |FN (x+ 2/N)−FN (x)]+, if y = x+ 2/N,
(1 + x)/2 exp(−βN |FN (x− 2/N)−FN (x)]+, if y = x− 2/N,
1− (1−x)

2 exp(−βN |FN (x+ 2/N)−FN (x)]+
− (1+x)

2 exp(−βN |FN (x− 2/N)−FN (x)]+, ifx = y.

(5.21)

The main point is that the remaining one-dimensional variational
problem involving the quadratic form (5.19) can be solved exactly. The
answer is given in the form
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Metastability 203

inf
g∈H̃

1
2

∑
m,m′

Qβ,NrN (m.m′)[g(m)− g(m′)]2 (5.22)

=

⎡⎣N(m+−m−)/2−1∑
�=0

1
Qβ,N (m+2�/N)rN (m− + 2�/N,m−(2�+ 2)/N)

⎤⎦−1

The sum appearing in the denominator can be further analysed using
the Laplace method, but this shall be not our main concern at the
moment.

The question we want to address now is how to get a corresponding
lower bound.

5.4 Lower Bounds

The real art in analysing metastability in our approach lies in the judi-
cious derivation of lower bounds for the capacity. There are two ways
of seeing how this can be done. First, we may use the monotonicity of
the Dirichlet form in the parameters pN (σ, τ). This means that we may,
in particular, set a number of the pN (σ, τ) to zero to obtain a simpler
system for which we may be able to find the solution of our variational
problem more easily. In many cases, this strategy has provided good
results.

There is, however, a more general approach that gives us far more
flexibility. To this end, consider a countable set I, and a let G ≡
{gxy, x, y ∈ Γ}, be a collection of sub-probability measures on I, i.e.
for each (x, y), gxy(α) ≥ 0, and

∑
α∈I gxy(α) ≤ 1. Then

cap(A,D) = inf
h∈HA,D

∑
α∈I

1
2

∑
x,y

μ(y)gxy(α)p(x, y) ‖h(x)− h(y)‖2

≥
∑
α∈I

inf
h∈HA,D

1
2

∑
x,y

μ(y)gxy(α)p(x, y) ‖h(x)− h(y)‖2

≡
∑
α∈I

inf
h∈HA,D

ΦG(α)(h) ≡
∑
α∈I

capG(α)(A,D), (5.23)

where HA,D is the space of functions from Γ to [0, 1] that vanish on
D and are equal to one on A. As this it true for all G, we get the
variational principle

cap(A,D) = sup
G

∑
α∈I

.capG(a)(A,D) (5.24)
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204 A. Bovier

Note that this may look trivial, as of course the supremum is realised
for the trivial case I = {1}, gxy(1) = 1, for all (x, y). The interest in the
principle arises from the fact that there may be other choices that still
realise the supremum (or at least come very close to it). If we denote
by hG(α)

A,D the minimizer of ΦG(α)(h), then G realises the supremum,
whenever

h
G(α)
A,D (x) = hA,D(x), ∀x : gxy(α) �= 0. (5.25)

Of course we do not know hA,D(x), but this observation suggest a very
good strategy to prove lower bounds, anyhow: guess a plausible test
function h for the upper bound, then try to construct G such that
the minimizers, hG(α), are computable, and are similar to h! If this
succeeds, the resulting upper and lower bounds will be at least very
close. Remarkably, this strategy actually does work in many cases.

Lower Bounds Through One-Dimensional Paths

The following approach was developed in this context with D. Ioffe [5].
It can be seen as a specialisation of a more general approach by Berman
and Konsowa [2]. We describe it first in an abstract context and then
apply it to the Curie-Weiss model. Let Γ ≡ Γ0 ∪ . . . ΓK be the vertex
set of a graph. We call a graph layered, if for any edge, e ≡ (v, u), there
exists � such that u ∈ Γ� and v ∈ Γ�−1 or v ∈ Γ�+1. Let p(u, v) be a
Markov transition matrix whose associated graph is a layered graph on
Γ , and whose unique reversible measure is given by μ. We are interested
in computing the capacity from Γ0 to ΓK , i.e.

C0,K ≡
1
2

inf
h:h(Γ0)=1,h(ΓK)=0

∑
σ,σ′∈Γ

μ(σ)p(σ, σ′) [h(σ)− h(σ′)]2 (5.26)

= inf
h:h(Γ0)=1,h(ΓK)=0

K−1∑

=0

∑
σ�∈Γ�,σ�+1∈Γ�+1

μ(σ
)p(σ
, σ
+1) [h(σ
)− h(σ
+1)]
2

Let us introduce a probability measure ν0 on Γ0. Let q be a Markov
transition matrix on Γ whose elements, q(σ.σ′), are non-zero only if,
for some �, σ ∈ Γ� and σ′ ∈ Γ�+1, and if p(σ, σ′) > 0. Define, for � ≥ 0,

ν�+1(σ�+1) =
∑
σ�∈Γ�

ν�(σ�)q(σ�, σ�+1). (5.27)

Let T denote the set of all directed paths form Γ0 to ΓK on our
graph. Note that the Markov chain with transition matrix q and initial
distribution ν0 defines a probability measure on T , which we will denote
by Q.
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Metastability 205

We now associate for any T ∈ T and any edge, b = (σ�, σ�+e) in our
graph the weight

wT (b) ≡
{

0, if b �∈ T
Q(T )/(q(b)ν�(σ�)), if b = (σ�, σ�+1) ∈ T

(5.28)

Lemma 5.1. For all b in our graph,∑
T

wT (b) = 1 (5.29)

Proof. Note that, if T = (σ − 1, . . . , σK), and b = (σ�, σ�+e)

Q(T )/(q(b)ν�(σ�)) = ν0(σ0)q(σ0, σ1) . . .

. . . q(σ�−1, σ�)
1
ν�
q(σ�+1, σ�+2) . . . q(σk−1, σK) (5.30)

Summing over all T containing b means to sum this expression over
σ0, σ1, . . . , σ�−1, and over σ�+1, . . . , σK . Using the definition of νk is
easy to see that this gives exactly one.

Theorem 5.1. With the definition above we have that

C0,K ≥
∑
T∈T

Q(T )

[
K−1∑
�=0

ν�(σ�)q(σ�, σ�+1)
μ(σ�)p(σ�, σ�+1)

]−1

(5.31)

Proof. In view of the preceding lemma, we have clearly that

C0,K = inf
h:h(Γ0)=1,h(ΓK)=0

K−1∑
�=0

∑
σ�∈Γ�,σ�+1∈Γ�+1

∑
T∈T

wT (σ�, σ�+1)μ(σ�)

× p(σ�, σ�+1) [h(σ�)− h(σ�+1)]
2

= inf
h:h(Γ0)=1,h(ΓK)=0

∑
T∈T

Q(T )
K−1∑
�=0

μ(σ�)p(σ�, σ�+1)
ν�(σ�)q(σ�, σ�+1)

[h(σ�)−h(σ�+1)]
2

≥
∑
T∈T

Q(T ) inf
h:h(σ0)=1,h(σK)=0

K−1∑
�=0

μ(σ�)p(σ�, σ�+1)
ν�(σ�)q(σ�, σ�+1)

[h(σ�)−h(σ�+1)]
2

(5.32)

Solving the one-dimensional variational problems in the last line gives
the well-known expression that is given in the statement of the theorem.
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206 A. Bovier

Remark 5.1. The quality of the lower bound depends on to what extend
the interchange of the summation over paths and the infimum over the
functions h is introducing errors. If the minimizers are the same for all
paths, then no error what so ever is made. This will be the case if the
effective capacities

μ(σ�)p(σ�, σ�+1)
ν�(σ�)q(σ�, σ�+1)

are independent of the particular path.

Remark 5.2. Berman and Konsowa [2] prove a more general lower
bound where the space of paths contains all self-avoiding paths, with-
out the restriction of directedness we have made. In this class, they
show the supremum over all probability distributions on the space of
paths yields exactly the capacity.

Application to the Curie-Weiss Model

In the Curie-Weiss model, it is a very simple matter to achieve the
objective stated in the remark above. Clearly, we choose for the layers
the sets Γ� ≡ {σ : mN (σ) = m∗

− + 2�/N}.
Since μ(σ) depends only on mN (σ), and pN (σ, τ) depends only on

mN (σ), mN (τ), and the fact whether or not τ is reachable from σ by
a single spin flip, it is enough to choose for ν0 the uniform measure on
the set Γ0, and for q(σ�, σ�+1) = 2

N−Nm∗
−−2� . Then ν� is the uniform

measure on Γ�, and that

ν�(σ�)
μ(σ�)

=
1

μ(Γ�)
=

1
Qβ,N (m∗

− + 2�/N)
, (5.33)

and
pN (σ�, σ�+1)
q(σ�, σ�+1)

= rN (σ�, σ�+1). (5.34)

Thus, the lower bound from Theorem 5.1 reproduces the upper bound
exactly.

6 Metastability and Spectral Theory

We now turn to the characterisation of metastability through spectral
data. The connection between metastable behaviour and the existence
of small eigenvalues of the generator of the Markov process has been
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Metastability 207

realised for a very long time. Some key references are [16, 17, 18, 23,
24, 27, 31, 33, 38, 40, 39]. Here we will explain the approach developed
in [8].

We will show that Definition 4.1 implies that the spectrum of L
decomposes into a cluster of |M| very small real eigenvalues that are
separated by a gap from the rest of the spectrum. To avoid complica-
tions we will assume that |Γ | s finite throughout this section.

6.1 Basic Notions

Let D ⊂ Γ . We say that λ ∈ C is an eigenvalue for the Dirichlet prob-
lem, resp. the Dirichlet operator LD, with boundary conditions in D
if the equation

Lf(x) = λf(x), x ∈ Γ\D
f(x) = 0, x ∈ D (6.1)

has a non-zero solution f . f ≡ fλ is then called an eigenfunction.
If D = ∅ we call the corresponding values eigenvalues of L. From the
symmetry of the operator L it follows that any eigenvalue must be real;
moreover, since L is positive, all eigenvalues are positive. If Γ is finite
and D �= ∅, the eigenvalues of the corresponding Dirichlet problem
are strictly positive, while zero is an eigenvalue of L itself with the
constant function the corresponding (right) eigenfunction.

If λ is not an eigenvalue of LD, the Dirichlet problem

(L− λ)f(x) = g(x), x ∈ Γ\D
f(x) = 0, x ∈ D (6.2)

has a unique solution and the solution can be represented in the form

f(x) =
∑
y∈Γ\D

GλΓ\D(x, y)g(y) (6.3)

where GλΓ\D(x, y) is called the Dirichlet Green’s function for L− λ.
Equally, the boundary value problem

(L− λ)f(x) = 0, x ∈ Γ\D
f(x) = φ(x), x ∈ D (6.4)

has a unique solution in this case. Of particular importance will be the
λ-equilibrium potential (of the capacitor (A,D)), hλA,D, defined as the
solution of the Dirichlet problem
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208 A. Bovier

(L− λ)hλA,D(x) = 0, x ∈ (A ∪D)c

hλA,D(x) = 1, x ∈ A

hλA,D(x) = 0, x ∈ D (6.5)

We may define analogously the λ-equilibrium measure

eλD,A(x) ≡ (L− λ)hλA,D(x) (6.6)

Alternatively, eλA,D on A, is the unique measure on A, such that

hλA,D(x) =
∑
y∈A

GλDc(x, y)eλA,D(y) (6.7)

If λ �= 0, the equilibrium potential still has a probabilistic interpre-
tation in terms of the Laplace transform of the hitting time τA of the
process starting in x and killed in D. Namely, we have for general λ,
that, with u(λ) ≡ − ln(1− λ),

hλA,D(x) = Exe
u(λ)τA1IτA<τD

for x ∈ (A ∪ D)c, whenever the right-hand side exists. Note that the
left hand side is in general the meromorphic extension (in λ ∈ C) of
the probabilistically defined right-hand side.

6.2 A Priori Estimates

The first step of our analysis consists in showing that the matrix LM

that has Dirichlet conditions in all the points of M has a minimal
eigenvalue that is not smaller than O(a2).

The basis for a priori estimates of eigenvalues is the variational
representation of the principal eigenvalue:

Lemma 6.1. The principal (smallest) eigenvalue, λD, of the Dirichlet
operator LD satisfies

λD = inf
f :f(x)=0,x∈D

Φ(f)
‖f‖22,μ

(6.8)

where ‖f‖2,μ ≡
(∑

x∈Γ μ(x)f(x)
2
)1/2
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Metastability 209

Proof. Since LD is a positive operator, there exists A such that L =
A∗A. If λ is the smallest eigenvalue of LD, then

√
λ is the smallest

eigenvalue of A and vice versa. But

λ =
(

inf
f :f(x)=0,x∈D

‖Af‖2,μ
‖f‖2,μ

)2

= inf
f :f(x)=0,x∈D

‖Af‖22,μ
‖f‖22,μ

= inf
f :f(x)=0,x∈D

Φ(f)
‖f‖22,μ

(6.9)

The following is a simple application due to Donsker and Varadhan
[15].

Lemma 6.2. Let λD denote the infimum of the spectrum of LD. Then

λD ≥
1

supz∈Γ\D EzτD
(6.10)

Proof. Consider any function φ : Γ → R satisfying φ(x) = 0 for x ∈ Δ.
We will use the elementary fact that for all x, y ∈ Γ and C > 0

φ(y)φ(x) ≤ 1
2
(φ(x)2C + φ(y)2/C) (6.11)

with C ≡ ψ(y)/ψ(x), for some positive function ψ to get a lower bound
on Φ(φ):

Φ(φ) =
1
2

∑
x,y

μ(x)p(x, y) (φ(x)− φ(y))2

= ‖φ‖22,μ −
∑
x,y �∈D

μ(x)p(x, y)φ(x)φ(y)

≥ ‖φ‖22,μ −
∑
x,y

μ(x)p(x, y)
1
2
(
φ(x)2ψ(y)/ψ(x) + φ(y)2ψ(x)/ψ(y)

)
= ‖φ‖22,μ −

∑
x�∈D

μ(x)φ(x)2
∑
y p(x, y)ψ(y)
ψ(x)

(6.12)

Now choose ψ(x) = wD(x) (defined in (3.24)). By (3.25), this yields

Φ(φ) ≥ ‖φ‖22,μ − ‖φ‖22,μ +
∑
x�∈D

μ(x)φ(x)2
1

wD(x)

=
∑
x�∈D

μ(x)φ(x)2
1

wD(x)
≥ ‖φ‖22,μ sup

x∈Dc

1
wD(x)

=‖φ‖22,μ
1

supx∈Dc ExτD

(6.13)
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210 A. Bovier

Since this holds for all φ that vanish on D,

λD = inf
φ:φ(x)=0,x∈D

Φ(φ)
‖φ‖22,μ

≥ 1
supx∈Dc ExτD

(6.14)

as claimed. ere a is defined in (4.15).

If we combine this result with the estimate from Lemma 4.4, we
obtain the following proposition.

Proposition 6.1. Let λ0 denote the principal eigenvalue of the oper-
ator LM. Then there exists a constant C > 0, independent of ε, such
that for all ε small enough,

λ0 ≥ Ca2, (6.15)

where a is defined in (4.15).

Remark 6.1. Proposition 6.1 links the fast time scale to the smallest
eigenvalue of the Dirichlet operator, as should be expected. Note that
the relation is not very precise. We will soon derive a much more pre-
cise relation between times and eigenvalues for the cluster of small
eigenvalues.

6.3 Characterization of Small Eigenvalues

We will now obtain a representation formula for all eigenvalues that
are smaller than λ0. It is clear that there will be precisely |M| such
eigenvalues. This representation was exploited in [8], but already in
1973 Wentzell [40, 39] put forward very similar ideas (in the case of
general Markov processes). As will become clear, this is extremely sim-
ple in the context of discrete processes (see [10] for the more difficult
continuous case).

The basic idea is to use the fact that the solution of the Dirichlet
problem

(L− λ)f(x) = 0, x �∈ M
f(x) = φx, x ∈M, (6.16)

which exists uniquely if λ < λ0, already solves the eigenvalue equation
Lφ(x) = λφ(x) everywhere, except possibly on M. It is natural to try
to choose the boundary conditions φx, x ∈ M carefully in such a way
that (L−λ)f(x) = 0 holds also for all x ∈M. Note that there are |M|
free parameters (φx, x ∈M) for just as many equations. Moreover, by
linearity,
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Metastability 211

f(y) =
∑
x∈M

φxh
λ
x,M\x(y). (6.17)

Thus the system of equations to be solved can be written as

0 =
∑
x∈M

φxLh
λ
x,M\x(m) ≡

∑
x∈M

φxe
λ
x,M\x(m), ∀m ∈M, (6.18)

Thus, if these equations have a non-zero solution φxx ∈ M, then λ is
an eigenvalue. On the other hand, if λ is an eigenvalue smaller than λ0

with eigenfunction φλ, then we may take φx ≡ φλ(x) in (6.16). Then,
obviously, f(y) = φλ(y) solves (6.16) uniquely, and it must be true that
(6.18) has a non-zero solution.

Let us denote by EM(λ) the |M| × |M|- matrix with elements

(EM(λ))xy ≡ eλz,M\z(x). (6.19)

Since the condition for (6.16) to have a non-zero solution is precisely
the vanishing of the determinant of EλM, we can now conclude that:

Lemma 6.3. A number λ < λ0 is an eigenvalue of L if and only if

det EM(λ) = 0 (6.20)

In the following we need a useful expression for the matrix elements
of EM(λ). Since we anticipate that λ will be small, we set

hλx(y) ≡ hx(y) + ψλx(y), (6.21)

where hx(y) ≡ hx,M\x(y) and consequently ψλx(y solves the inhomoge- AQ: Please
check for
missing closing
bracket.

neous Dirichlet problem

(L− λ)ψλx(y) = λhx(y), y ∈ Γ\M
ψλx(y) = 0, y ∈M (6.22)

A reorganisation of terms allows to express the matrix EM(λ) in the
following form:

Lemma 6.4.

(EM(λ))xz = μ(x)−1
(
Φ(hz, hx)− λ((hz, hx)μ + (hx, ψλz )μ

)
(6.23)
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212 A. Bovier

Proof. Note that

(L− λ)hλz (x) = (L− λ)hz(x) + (L− λ)ψλz (x)
= Lhz(x)− λhz(x) + (L− λ)ψλz (x) (6.24)

Now,

Lhz(x) =
μ(x)
μ(x)

hx(x)Lhz(x) (6.25)

The function μ−1(y′)hx(y′)Lhz(y′) vanishes for all y′ �= x. Thus, by
adding a huge zero,

Lhz(x) = μ(x)−1
∑
y′∈Γ

μ(y′)hx(y′)Lhz(y′)

= μ(x)−1 1
2

∑
y,y′∈Γ

μ(y′)p(y′, y))[hz(y′)− hz(y)][hx(y′)− hx(y)] (6.26)

there the second inequality is obtained just as in the derivation of the
representation of the capacity through the Dirichlet form. Similarly,

(L− λ)ψλz (x) =

μ(x)−1
∑
y′∈Γ

μ(y′)
(
hx(y′)(L− λ)ψλz (y′)− λ1Iy′ �=xhx(y′)hz(y′)

)
(6.27)

Since ψλz (y) = 0 whenever y ∈ M, and Lhx(y) vanishes whenever
y �∈ M, using the symmetry of L, we get that the right-hand side of
(6.27) is equal to

−λμ(x)−1
∑
y′∈Γ

(
μ(y′)hx(y′)(ψλz (y

′) + 1Iy′ �=xhx(y′)hz(y′)
)

(6.28)

Adding the left-over term −λhz(x) = −λhx(x)hz(x) from (6.24) to
(6.27), we arrive at (6.23).

Expanding in λ

Anticipating that we are interested in small λ, we want to control the λ-
dependent terms ψλ in the formula for the matrix EM(Λ). From (6.22)
we can conclude immediately that ψλx is small compared to hx in the
L2(Γ, μ) sense when λ is small, since

ψλx = λ(LM − λ)−1hx. (6.29)
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Using that for symmetric operators, ‖(L − a)−1‖ ≤ 1
dist( spec(L),a) , we

see that
‖ψλx‖2,μ ≤

λ

λ0 − λ‖hx‖2,μ. (6.30)

We are now in a position to relate the small eigenvalues of L to the
eigenvalues of the classical capacity matrix. Let us denote by ‖ · |2 ≡
‖ · ‖2,μ.

Theorem 6.1. If λ < λ0 is an eigenvalue of L, then there exists an
eigenvalue μ of the |M| × |M|-matrix K whose matrix elements are
given by

Kzx =
1
2

∑
y �=y′ μ(y

′)p(y′, y)[hz(y′)− hz(y)][hx(y′)− hx(y)]
‖hz‖2‖hx‖2

≡ Φ(hz, hx)
‖hz‖2‖hx)‖2

(6.31)

such that λ = μ (1 +O(ρ)), where ρ = λ/λ0.

We will skip the proof of this theorem since it is not really needed.
In fact we will prove the following theorem.

Theorem 6.2. Assume that there exists x ∈ M such that, for some
δ � 1

δ2
cap(x,M\x)
‖hx‖22

≥ max
z∈M\x

cap(z,M\z)
‖hz‖22

. (6.32)

Then the largest eigenvalue of L below λ0 is given by

λx =
cap(x,M\x)
‖hx‖22

(1 +O(δ2 + ρ2)). (6.33)

Moreover, the eigenvector, φ, corresponding to the largest eigenvalues
normalized s.t. φx = 1 satisfies φz ≤ C(δ + ρ), for z �= x.

Proof. Let x be the point inM specified in the hypothesis. Denote by λ̄1

the Dirichlet eigenvalue with respect the set M\x. It is not very hard
to verify that λ̄1 ∼ cap(x,M\x)

‖hx‖22
. Moreover, one can easily verify that

there will be exactly |M| − 1 eigenvalues below λ̄1. Thus, there must
be one eigenvalue, λx, between λ̄1 and λ0. We are trying to compute
the precise value of this one, i.e. we look for a root of the determinant
of EM (λ) that is of order at least cap(x,M\x)

‖hx‖22
.

The determinant of EM(λ) vanishes together with that of the matrix
K̂ whose elements are
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K̂xz=
μ(x)

‖hx‖2‖hz‖2
(EM(λ))xz=

Φ(hx, hz)
‖hx‖2‖hz‖2

−λ
(

(hx, hz)μ + (ψλx , hz)μ
‖hx‖2‖hz‖2

)
.

(6.34)

We will now control al the elements of this matrix. We first deal
with the off-diagonal elements of this matrix.

Lemma 6.5. There is a constant C <∞ such that

max
x�=z∈M

(hx, hz)μ
‖hx‖2‖hz‖2

≤ Ca−1 max
m∈M

μ(m)−1cap(m,M\m) ≤ Cρ. (6.35)

Proof. Note first by the estimate (3.44) the equilibrium potentials hx(y)
are essentially equal to one on A(x). Namely,

1 ≥ hx(y) ≥ 1− cap(y,M\x)
cap(y, x)

(6.36)

By Corollary 4.1, cap(y,M\x) ≤ 2cap(x,Mx), or μ(y) ≤ 3|M|
a

cap(x,Mx).
Thus∑

y∈A(x)

μ(y)hx(y)2 ≥
∑

y∈A(x)

μ(y)≥ 3|M|
a cap(x,Mx)

μ(y)
(

1− cap(x,M\x)
cap(y, x)

)2

≥
∑

y∈A(x)

μ(y)≥ 3|M|
a cap(x,Mx)

μ(y)−
∑

y∈A(x)

2
μ(y)

cap(y, x)
cap(x,M\x)

= μ(A(m))
(

1− 3|A(m)||M|a−1 cap(x,M\x)
μ(A(m))

)
≥ μ(A(m)) (1−O(ρ)) . (6.37)

Thus the denominator in (6.35) is bounded from below by√ ∑
y∈A(x)

μ(y)h2
x(y)

∑
y∈A(y)

μ(y)h2
z(y) ≥

√
μ(A(x))μ(A(z))(1−O(ρ)).

(6.38)
To bound the numerator, we use that, for any x �= z ∈M,∑

y∈Γ
μ(y)hx(y)hz(y) ≤ Cρ

√
μ(x)μ(z). (6.39)

Using this bound we arrive at the assertion of the lemma.

Next we bound the terms involving ψλ.
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Lemma 6.6. If λ0 denotes the principal eigenvalue of the operator L
with Dirichlet boundary conditions in M, then∣∣∣∣∣∣

∑
y∈Γ

μ(y)
(
hz(y)ψλx(y)

)∣∣∣∣∣∣
≤ λ

(λ0 − λ)‖hz‖2‖hx‖2. (6.40)

Proof. Recall that ψλx solves the Dirichlet problem (6.22). But the
Dirichlet operator LM − λ is invertible for λ < λ0 and is bounded
as an operator on �2(Γ, μ) by 1/(λ0 − λ). Thus

‖ψλx |22 ≤
(

λ

λ0 − λ

)2

‖hx‖22 (6.41)

The assertion of the lemma now follows from the Cauchy-Schwartz
inequality.

Finally we come to the control of the terms involving Φ(hx, hz). By
the Cauchy-Schwartz inequality,

Φ(hz, hx) =

∣∣∣∣∣∣12
∑
y,y′

μ(y′)p(y′, y)[hx(y′)− hx(y)][hz(y′)− hz(y)]

∣∣∣∣∣∣
≤

√
Φ(hx)Φ(hz). (6.42)

Thus ∣∣∣∣ Φ(hx, hz)
‖hx‖2‖hz‖2

∣∣∣∣ ≤
√
Φ(hx)
‖hx‖22

√
Φ(hz)
‖hz‖22

. (6.43)

Therefore, by assumption, there exists one x ∈ M such that for any
(z, y) �= (x, x), ∣∣∣∣ Φ(hx, hz)

‖hx‖2‖hz‖2

∣∣∣∣ ≤ δΦ(hx)
‖hx‖22

. (6.44)

If we collect all our results:

(i) The matrix K̃ has one diagonal element

K̃xx =
Φ(hx)
‖hx‖22

− λ(1 +O(λ)) ≡ A− λ(1 +O(λ)), (6.45)

(ii) all other diagonal elements, Kyy, satisfy

K̃yy = O(δ2)A− λ(1 +O(λ)) ≈ −λ. (6.46)
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(iii) All off-diagonal elements satisfy

|K̃yz| ≤ Cδ2
Φ(hx)
‖hx‖22

+ Cλρ ≡ C(δA+ λρ). (6.47)

One can now look for non-zero solutions of the equations∑
y

K̃zycy = 0, z ∈M. (6.48)

In the sequel C denotes a numerical constant whose value changes
from line to line. We may choose the vector c in such a way that
maxy∈M |cy| = 1, and this component realising the maximum to be
equal to +1. We will first show that cx = 1. To do so, assume that
cz = 1 for z �= x. Then the equation (6.48) can be written

−K̃zz =
∑
y �=z

cyK̃zy (6.49)

Using our bounds, this implies

λ ≤ C(δA+ ρλ)⇒ λ ≤ CδA

1− Cρ, (6.50)

in contradiction with the fact that λ ≥ A. Thus cx = 1 ≥ |cz|, for all
z �= x. Let us return to equation (6.48) for z �= x. It now reads

−K̃zzcz =
∑
y �=z

cyK̃zy, (6.51)

and hence
|cz| ≤ C

δA+ ρλ
λ

(6.52)

Finally, we consider equation (6.48) with z = x,

K̃xx =
∑
y �=x

cyK̃xy. (6.53)

In view of our bounds on K̃xy and on cy, this yields

|K̃xx| ≤ C
(δA+ ρλ)2

λ
≤ Cδ2A+ Cρ2λ, (6.54)

that is, we obtain that

|A− λ| ≤ Cδ2A+ ρ2λ (6.55)
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which implies
λ = A

(
1 +O(δ2 + ρ2)

)
, (6.56)

which is the first claim of the proposition. The assertion on the eigen-
vector follows from our estimates on the vector c.

Theorem 6.2 has the following simple corollary, that allows in many
situations a complete characterization of the small eigenvalues of L.

Theorem 6.3. Assume that we can construct a sequence of metastable
sets Mk ⊃ Mk−1 ⊃ · · · ⊃ M2 ⊃ M1 = x0, such that for any i,
Mi\Mi−1 = xi is a single point, and that each Mi satisfies the as-
sumptions of Theorem 6.2. Then L has k eigenvalues

λi =
cap(xi,Mi−1)
μ(A(xi))

(1 +O(δ)) (6.57)

As a consequence,

λi =
1

ExiτMxi

(1 +O(δ)) (6.58)

The corresponding normalized eigenfunction is given by

ψi(y) =
hxi,Mi−1(y)
‖hxi,Mi−1‖2

+
i−1∑
j=1

O(δ)
hxi,Mj−1(y)
‖hxi,Mj−1‖2

(6.59)

Proof. The idea behind this theorem is simple. Let the sets Mi of the
corollary be given by Mi = {x1, . . . , xi}. Having computed the largest
eigenvalue, λk, of L, we only have to search for eigenvalues smaller than
λk. If we could be sure that the principal Dirichlet eigenvalue ΛMk−1

is
(much) larger than k−1st eigenvalue of L, then we could do so as before
but replacing the set M≡Mk by Mk−1 everywhere. λk−1 would then
again be the largest eigenvalue of a capacity matrix involving only the
points in Mk−1. Iterating this procedure we arrive at the conclusion of
the theorem.

The theorem is now immediate except for the statement (6.58). To
conclude, we need to show that cap(x�+1,M�) = cap(x�,Mx�

). To
see this, note first that M� ⊃ Mx�

. For if there was x ∈ Mx�
that

is not contained in M�, then cap(x,M�\x) ∼ cap(x�+1,M�), while
‖hx�+1,M�

‖2 ≤ ‖hx,M�+1\x‖2, contradicting the assumption in the con-
struction of the set M�. Thus cap(x�+1,M�) ≥ cap(x�,Mx�

).
Similarly, if there was any point x ∈M� for which cap(x�+1,M�) <

cap(x�,Mx�
), then this point would have been associated to a larger

eigenvalue in an earlier stage of the construction and thus would have
already been removed from M�+1 before x�+1 is being removed.
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This observation allows us to finally realize that the k smallest eigen-
values of L are precisely the inverses of the mean (metastable) exit times
from the metastable points M.

6.4 Exponential Law of the Exit Time

The spectral estimates can be used to show that the law of the
metastable exit times are close to exponential, provided the non-
degeneracy hypothesis of Theorem 6.2 hold. Note that

Px[τMx > t] =
∑

x1,...,xt �∈Mx

p(x, x1)
t−1∏
i=1

p(xi, xi+1) =
∑
y �∈Mx

(
PMx

)t
xy
.

(6.60)

To avoid complications, let us assume that the P is positive (in partic-
ular that P has no eigenvalues close to −1. This can be avoided e.g. by
imposing that p(x, x) > 0). We now introduce the projection operators
Π on the eigenspace of the principal eigenvalue of PM� . Then(

PMx
)t
xy

=
∑
y �∈Mx

((
PMx

)t
Π

)
xy

+
∑
y �∈Mx

((
PMx

)t
Πc

)
xy
. (6.61)

Using our estimate for the principal eigenfunction of LMx the first term
in (6.61) equals(

1− λMx
)t ∑
y �∈Mx

hx,Mx(y)
‖hx,Mx(y)‖2

(1 +O(λMx)) ∼ e−λMx t. (6.62)

The remaining term is bounded in turn by

e−λ
Mx
2 t, (6.63)

which under our assumptions decays much faster to zero than the first
term.
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