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Introduction

The common feature of mean-field models is that the spatial structure

of the lattice Z
d is abandoned in favour of a simpler setting, where sites

are indexed by the natural numbers and all spins are supposed to interact

with each other, irrespective of their distance.

1.1 SK-models

The naive analog of the Curie–Weiss Hamiltonian with random couplings

would be

HN [ω](σ) = − 1

2N

∑

1≤i,j≤N

Jij [ω]σiσj (1.1)

for, say, Jij some family of i.i.d. random variables. The main interest

in this model concerns the case when the random couplings have mean

zero. In this case, we will see shortly that the normalization factor, N−1,

is actually inappropriate and must be replaced by N−1/2, to obtain an

interesting model. Namely, we certainly want the free energy to be

an extensive quantity, i.e. to be of order N . This means that, for

typical realizations of the disorder, there must be at least some spin

configurations, σ, for which HN (σ) ∼ CN , for some C > 0. Thus, we

must estimate P[maxσ HN (σ) ≥ CN ]. But,

P[max
σ

HN (σ) ≥ CN ] ≤
∑

σ∈SN

P[HN(σ) ≥ CN ] (1.2)

=
∑

σ∈SN

inf
t≥0

e−tCN
Ee

t 1
2N

�
i,j∈ΛN ×ΛN

Jij [ω]σiσj

=
∑

σ∈SN

inf
t≥0

e−tCN
∏

i,j∈ΛN×ΛN

Eet 1
2N Jij [ω]σiσj

1



2 1 Introduction

where we assumed that the exponential moments of Jij exist. A standard

estimate then shows that, for some constant c, Eet 1
2N Jij [ω]σiσj ≤ ec t2

2N2 ,

and so

P[max
σ

HN (σ) ≥ CN ] ≤ 2N inf
t≥0

e−tCNect2/2 ≤ 2Ne−
C2N2

2c (1.3)

which tends to zero with N . Thus, our Hamiltonian is never of order

N , but at best of order
√
N . The proper Hamiltonian for what is called

the Sherrington–Kirkpatrick model (or short SK-model), is thus

HSK
N ≡ − 1√

2N

∑

i,j∈ΛN×ΛN

Jijσiσj (1.4)

where the random variables Jij = Jji are i.i.d. for i ≤ j with mean zero

(or at most J0N
−1/2) and variance normalized to one for i 6= j and to two

for i = j In its original, and mostly considered, form, the distribution is

moreover taken to be Gaussian. Note that
∑

ij |N−1/2Jijσiσj | ∼ N3/2,

and that competing signs play a major role.

This model was introduced by Sherrington and Kirkpatrick in 1976

[22] as an attempt to furnish a simple, solvable mean-field model for the

then newly discovered class of materials called spin-glasses. However,

it turned out that the innocent looking modifications made to create

a spin-glass model that looks similar to the Curie–Weiss model had

thoroughly destroyed the simplifying properties that made the latter so

easily solvable, and that a model with an enormously complex struc-

ture had been invented. Using highly innovative ideas based on ad hoc

mathematical structures, Parisi (see [17]) produced in the mid-eighties

a heuristic framework that explained the properties of the model. Only

very recently, these predictions have to some extent been rigorously jus-

tified through work of F. Guerra [12] and M. Talagrand [26], which we

will explain in these lectures.

1.2 Gaussian process

It will be useful to introduce a different point of view on the SK-model,

which allows us to put it in a wider context. This point of view consists of

regarding the Hamiltonian (1.4) as a Gaussian random process1 indexed

1 The choice of Gaussian couplings and hence Gaussian processes may appear too
restrictive, and, from a physical point of view, poorly motivated. It turns out, how-
ever, that the Gaussian nature of the processes considered is not really important,
and that a large class of models have the same asymptotics as the corresponding
Gaussian ones (at least on the level of the free energy) [6]. It is however a good
idea to start with the simplest situation.
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by the set SN , i.e. by the N -dimensional hypercube. We will restrict

our attention to the case when the Jij are centred Gaussian random

variables. In this case, HN (σ) is in fact a centred Gaussian random

process which is fully characterized by its covariance function

cov(HN (σ), HN (σ′)) =
1

2N

∑

1≤i,j,l,k≤N

EJijJklσiσjσ
′
kσ

′
l (1.5)

=
1

N

∑

1≤i,j≤N

σiσ
′
iσjσ

′
j = NRN(σ, σ′)2

where RN (σ, σ′) ≡ N−1
∑N

i=1 σiσ
′
i is usually called the overlap between

the two configurations σ and σ′. It is useful to recall that the overlap

is closely related to the Hamming distance dHAM (σ, σ′) ≡ #(i ≤ N :

σi 6= σ′
i), namely RN (σ, σ′) = (1 − 2N−1dHAM (σ, σ′)).

Seen this way, the SK- model is a particular example of a class of

models whose Hamiltonian are centred Gaussian random process on the

hypercube with covariance depending only on RN (σ, σ′),

cov(HN (σ), HN (σ′)) = Nξ(RN (σ, σ′)) (1.6)

normalized such that ξ(1) = 1. A class of examples considered in the

literature are the so-called p-spin SK-models, which are obtained by

choosing ξ(x) = |x|p. They enjoy the property that they may be repre-

sented in a form similar to the SK-Hamiltonian, except that the two-spin

interaction must be replaced by a p-spin one:

Hp−SK
N (σ) =

−1√
Np−1

∑

1≤i1,...,ip≤N

Ji1...ipσi1 . . . σip (1.7)

with Ji1,...,ip i.i.d. standard normal random variables1. As we will see

later, the difficulties in studying the statistical mechanics of these models

is closely linked to the understanding of the extremal properties of the

corresponding random processes. While Gaussian processes have been

heavily analyzed in the mathematical literature (see e.g. [16, 1]), the

known results were not enough to recover the heuristic results obtained

in the physics literature. This is one reason why this particular field

of mean-field spin-glass models has considerable intrinsic interest for

mathematics.

1 Sometimes the terms where some indices in the sum (1.7) coincide are omitted.
This can be included in our framework by making ξ explicitly N-dependent in a
suitable way. Although this has an effect for instance on the fluctuations of the
free energy (see [5]), for our present purposes this is not relevant and we choose
the form with the simplest expression for the covariance.
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1.3 The generalized random energy models

The class of models we have just introduced depends on the particular

choice of the Hamming distance as the metric on the hypercube. It is

only natural to think of further classes of models that can be obtained by

other choices of the metric. A particularly important alternative choice

is the lexicographic distance: Given two sequences σ and τ , we look at

the first value of the index i for which the sequences differ, i.e. σi 6= τi.

Naturally, if this value is N , then σ = τ and thus their distance is zero,

while, if i = 1, then we consider them maximally apart. The quantity

dN (σ, τ) ≡ N−1 (min(i : σi 6= τi) − 1) (1.8)

is thus analogous to the overlap RN (σ, τ). The corresponding Gaussian

processes are then characterised by covariances given by

cov(HN (σ), HN (τ)) = NA(dN (σ, τ)) (1.9)

where A can be chosen to be any non-decreasing function on [0, 1], and

can be thought of as a probability distribution function. The choice

of the lexicographic distance entails some peculiar features. First, this

distance is an ultrametric, i.e. for any three configurations σ, τ, ρ,

dN (σ, τ) = min (dN (σ, ρ), dN (τ, ρ)) (1.10)

This fact will be seen to have remarkable consequences, that make the

Gibbs measures of these models fully analyzable, even though they will

show as much complexity as those of the SK-models. Moreover, a clever

comparison between the two types of processes is instrumental in the

analysis of the SK-models themselves, as will be explained later. I will

therefore devote a considerable amount of attention to the analysis of

these models before returning to the study of the SK-models.

1.4 Gibbs measures, partition functions, free energies

The principle object that statistical mechanics aims to study in such

models are the Gibbs measures, µb,N , that the random Hamiltonians

induce on the state spaces SN , and their asymptotics as N tends to

infinity. One defines

µβ,N(σ) ≡ 2−N exp (−βHN (σ))

Zβ,N
(1.11)

where the normalizing factor,

Zβ,N ≡ Eσ exp (−βHN(σ)) =
∑

−σ ∈ SN2−N exp (−βHN (σ))

(1.12)
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is called the partition function. Frequently one introduces an extra para-

meter, h, called the magnetic field, which consists in tilting the a-priori

distribution of the sin variables σi by an exponential factor eβhσi . We

will come back to this only much later. The first quantity one would

like to compute is the exponential asymptotics of the normalising par-

tition function, which gives some hint as to how much the interaction

is pushing the measure away form the uniform a-priory measure. The

corresponding rate,

fβ,N ≡ − 1

βN
lnZβ,N (1.13)

is called the free energy. The first task is to compute the limit

fβ ≡ lim
N↑∞

fβ,N

if it exists. We now know that this limit exists almost surely, and is a

constant which can be expressed through a complicated variational prin-

ciple. Since the minus-sign and the factor β−1 are sometimes annoying,

we will often consider the nameless quantity

Φβ,N ≡ 1

N
lnZβ,N (1.14)

instead of the free energy.

1.5 Gibbs states

In principle we would like to know much more about the nature of the

Gibbs measures of these models then just the free energy. The real ques-

tion concerns the geometry of the mass distribution on the hypercube.

This is, however, a rather complicated issue that we will possibly touch

towards the end of these notes in general, although we will illustrate this

in a very simple case soon. Basic question to formulate are: Is the sup-

port of µβ connected or disconnected? If not, what is the distribution

of mass on the different components? What is the structure of the set

of connected components?
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The simples example: the REM

The most familiar processes for a probabilist are surely independent

random variables. The corresponding model is known as the random

energy model or REM.

The REM was introduced by Derrida [9, 10] in 1980. One might think

that it would be an extremely misleading model, and that its study

teaches us nothing about other models such as the SK model. This turn

out not to be the case. We set

HN (σ) = −
√
NXσ (2.1)

where Xσ, σ ∈ SN , are 2N i.i.d. standard normal random variables.

2.1 Ground-state energy and free energy

The first and as we will see crucial information we require concerns the

value of the maximum of the variables Xσ, i.e. the ground-state energy.

For i.i.d. random variables, this is of course not very hard.

Lemma 2.1.1 The family of random variables introduced above satisfies

lim
N↑∞

max
σ∈SN

N−1/2Xσ =
√

2 ln 2 (2.2)

both almost surely and in mean.

Proof Since everything is independent,

P

[
max
σ∈SN

Xσ ≤ u

]
=

(
1 − 1√

2π

∫ ∞

u

e−x2/2dx

)2N

(2.3)

6
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and we just need to know how to estimate the integral appearing here.

This is something we should get used to quickly, as it will occur all over

the place. It will always be done using the fact that, for u > 0,
1

u
e−u2/2

(
1 − 2u−2

)
≤
∫ ∞

u

e−x2/2dx ≤ 1

u
e−u2/2 (2.4)

We see that for our probability to converge neither to zero nor to one,

u must be chosen in such a way that the integral is of order 2−N . With

the help of the bounds (2.4), one can show with a little computation

that, if we define uN(x) by

2N

√
2π

∫ ∞

uN (x)

e−z2/2dx = e−x (2.5)

then (for x > − lnN/ ln 2)

uN (x) =
√

2N ln 2+
x√

2N ln 2
− ln(N ln 2) + ln 4π

2
√

2N ln 2
+ o(1/

√
N) (2.6)

Thus

P

[
max
σ∈SN

Xσ ≤ uN (x)

]
=
(
1 − 2−Ne−x

)2N

→ e−e−x

(2.7)

In other terms, the random variable u−1
N (maxσ∈SN Xσ) converges in

distribution to a random variable with double-exponential distribution

(this is the most classic result of extreme value statistics, see [15]). The

assertion of the lemma is now a simple corollary of this fact.

Next we turn to the analysis of the partition function. In this model,

the partition function is just the sum of i.i.d. random variables, i.e.

Zβ,N ≡ 2−N
∑

σ∈SN

eβ
√

NXσ (2.8)

A first guess would be that a law of large numbers might hold, implying

that Zβ,N ∼ EZβ,N , and hence

lim
N↑∞

Φβ,N = lim
N↑∞

1

N
ln EZβ,N =

β2

2
, a.s. (2.9)

It turns out that this is indeed true, but only for small enough values of

β, and that there is a critical value βc associated with a breakdown of

the law of large numbers. The analysis of this problem will allow us to

compute the free energy exactly.

Theorem 2.1.2 In the REM,

lim
N↑∞

EΦβ,N =

{
β2

2 , for β ≤ βc

β2
c

2 + (β − βc)βc, for β ≥ βc

(2.10)
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where βc =
√

2 ln 2.

Proof We use the method of truncated second moments, which was

introduced in the context of spin-glasses by M. Talagrand [23, 24, 25].

We will first derive an upper bound for EΦβ,N . Note first that by

Jensen’s inequality, E lnZ ≤ ln EZ, and thus

EΦβ,N ≤ β2

2
(2.11)

On the other hand we have that

E
d

dβ
Φβ,N = N−1/2

E
EσXσe

β
√

NXσ

Zβ,N
(2.12)

≤ N−1/2
E max

σ∈SN

Xσ ≤ β
√

2 ln 2(1 + C/N)

for some constant C. Combining (2.11) and (2.12), we deduce that

EΦβ,N ≤ inf
β0≥0

{
β2

2 , for β ≤ β0

β2
0

2 + (β − β0)
√

2 ln 2(1 + C/N), for β ≥ β0

(2.13)

It is easy to see that the infimum is realized (ignore the C/N correc-

tion) for β0 =
√

2 ln 2. This shows that the right-hand side of (2.10) is

an upper bound.

It remains to show the corresponding lower bound. Note that, since
d2

dβ2 Φβ,N ≥ 0, the slope of Φβ,N is non-decreasing, so that the theorem

will be proven if we can show that Φβ,N → β2/2 for all β <
√

2 ln 2, i.e.

that the law of large numbers holds up to this value of β. A natural

idea to prove this is to estimate the variance of the partition function1.

Naively, one would compute

EZ2
β,N = EσEσ′Eeβ

√
N(Xσ+Xσ′ )

= 2−2N



∑

σ 6=σ′

eNβ2

+
∑

σ

e2Nβ2


 (2.14)

= eNβ2
[
(1 − 2−N ) + 2−NeNβ2

]

where all we used is that for σ 6= σ′ Xσ and Xσ′ are independent. The

second term in the square brackets is exponentially small if and only if

β2 < ln 2. For such values of β we have that

1 This idea can be traced to Aizenman, Lebowitz, and Ruelle [2], and, later, Comets
and Neveu [7], who used it in the proofs of a central limit theorem for the free
energy in the SK-model.
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P

[∣∣∣∣ln
Zβ,N

EZβ,N

∣∣∣∣ > εN

]
= P

[
Zβ,N

EZβ,N
< e−εN or

Zβ,N

EZβ,N
> eεN

]

≤ P

[(
Zβ,N

EZβ,N
− 1

)2

>
(
1 − e−εN

)2
]

≤
EZ2

β,N/(EZβ,N)2 − 1

(1 − e−εN)2

≤ 2−N + 2−NeNβ2

(1 − e−εN)2
(2.15)

which is more than enough to get (2.9). But of course this does not

correspond to the critical value of β claimed in the proposition! Some

reflection shows that the point here is that when computing Eeβ
√

N2Xσ ,

the dominant contribution comes from the part of the distribution of Xσ

where Xσ ∼ 2β
√
N , whereas in the evaluation of EZβ,N the values of

Xσ where Xσ ∼ β
√
N give the dominant contribution. Thus one is led

to realize that instead of the second moment of Z one should compute

a truncated version of it, namely, for c ≥ 0,

Z̃β,N(c) ≡ Eσe
β
√

NXσ1IXσ<c
√

N (2.16)

An elementary computation using (2.4) shows that, if c > β, then

EZ̃β,N (c) = e
β2N

2

(
1 − e−Nβ2/2

√
2πN(c− β)

(1 +O(1/N)

)
(2.17)

so that such a truncation essentially does not influence the mean par-

tition function. Now compute the mean of the square of the truncated

partition function (neglecting irrelevant O(1/N) errors):

EZ̃2
β,N(c) = (1−2−N)[EZ̃β,N (c)]2 +2−N

Eeβ
√

N2Xσ1IXσ<c
√

N ) (2.18)

where

E e2β
√

NXσ 1IXσ<c
√

N =




e2β2N , if 2β < c

2−N e2cβN− c2N
2

(2β−c)
√

2πN
, otherwise,

(2.19)

Combined with (2.17) this implies that, for c/2 < β < c,

2−N
E e2β

√
NXσ 1IXσ<c

√
N(

E Z̃N,β

)2 =
e−N(c−β)2−N(2 ln 2−c2)/2

(2β − c)
√
N

(2.20)

Therefore, for all c <
√

2 ln 2, and all β < c,
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E

[
Z̃β,N(c) − EZ̃β,N (c)

EZ̃β,N (c)

]2

≤ e−Ng(c,β) (2.21)

with g(c, β) > 0. Thus Chebyshev’s inequality implies that

P

[
|Z̃β,N(c) − EZ̃β,N (c)| > δEZ̃β,N(c)

]
≤ δ−2e−Ng(c,β) (2.22)

and so, in particular,

lim
N↑∞

1

N
E ln Z̃β,N(c) = lim

N↑∞

1

N
ln EZ̃β,N(c) (2.23)

for all β < c <
√

2 ln 2 = βc. But this implies that for all β < βc, we can

chose c such that

lim
N↑∞

1

N
ln EZβ,N ≥ lim

N↑∞

1

N
ln EZ̃β,N(c) =

β2

2
(2.24)

This proves the theorem.

2.2 Fluctuations and limit theorems

In the previous section we went to some length to compute the limit of

the free energy. However, computing the free energy is not quite enough

to get a full understanding of a model, and in particular the Gibbs states.

The limit of the free energy has been seen to be a non-random quantity.

A question of central importance is to understand how and on what level

the randomness shows up in the corrections to the limiting behaviour.

This question has been fully analysed in [5], here I will only discuss the

low-temperature regime β >
√

2 ln 2.

Theorem 2.2.1 Let P denotes the Poisson point process on R with

intensity measure e−xdx. Then, in the REM, with α = β/
√

2 ln 2, if

β >
√

2 ln 2,

e−N [β
√

2 ln 2−ln 2]+ α
2 [ln(N ln 2)+ln 4π]Zβ,N

D→
∫ ∞

−∞
eαzP(dz) (2.25)

and

N (Φβ,N − EΦβ,N)
D→ ln

∫ ∞

−∞
eαzP(dz) − E ln

∫ ∞

−∞
eαzP(dz). (2.26)
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Proof Basically, the idea is very simple. We expect that for β large,

the partition function will be dominated by the configurations σ cor-

responding to the largest values of Xσ. Thus we split Zβ,N carefully

into

Zx
N,β ≡ Eσe

β
√

NXσ1I{Xσ≤uN (x)} (2.27)

and Zβ,N −Zx
β,N . Let us first consider the last summand. We introduce

the random variable

WN (x) = Zβ,N − Zx
β,N = 2−N

∑

σ∈SN

eβ
√

NXσ1I{Xσ>uN (x)} (2.28)

It is convenient to rewrite this as (we ignore the sub-leading corrections

to uN(x) and only keep the explicit part of (2.6))

WN (x) = 2−N
∑

σ∈SN

eβ
√

NuN (u−1
N (Xσ))1I{u−1

N (Xσ)>x}

= eN(β
√

2 ln 2−ln 2)−α
2 [ln(N ln 2)+ln 4π] (2.29)

×
∑

σ∈SN

eαu−1
N (Xσ)1I{u−1

N (Xσ)>x} (2.30)

≡ 1

C(β,N)

∑

σ∈SN

eαu−1
N (Xσ)1I{u−1

N (Xσ)>x} (2.31)

where

α ≡ β/
√

2 ln 2 (2.32)

and C(b,N) is defined through the last identity. The key to most of what

follows relies on the famous result on the convergence of the extreme

value process to a Poisson point process (for a proof see, e.g., [15]):

Theorem 2.2.2 Let PN be point process on R given by

PN ≡
∑

σ∈SN

δu−1
N (Xσ) (2.33)

Then PN converges weakly to a Poisson point process on R with intensity

measure e−xdx.

Clearly, the weak convergence of PN to P implies convergence in law of

the right-hand side of (2.29), provided that eαx is integrable on [x,∞)

w.r.t. the Poisson point process with intensity e−x. This is, in fact,

never a problem: the Poisson point process has almost surely support

on a finite set, and therefore eαx is always a.s. integrable. Note, however,

that for β ≥
√

2 ln 2 the mean of the integral is infinite, indicating the

passage to the low-temperature regime.
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Lemma 2.2.3 Let WN (x), α be defined as above, and let P be the Pois-

son point process with intensity measure e−zdz. Then

C(β,N)WN (x)
D→
∫ ∞

x

eαzP(dz) (2.34)

Next we show that the contribution of the truncated part of the par-

tition function is negligible compared to this contribution. For this it is

enough to compute the mean values

EZx
β,N ∼ eNβ2/2

uN (x)−1β
√

N∫

−∞

dz√
2π
e−

z2

2

∼ eNβ2/2 e−(uN (x)−β
√

N)2/2

√
2π(β

√
N − uN (x))

∼ 2−Nex(α−1)

α− 1
eN(β

√
2 ln 2−ln 2)−α

2 [ln(N ln 2)+ln 4π]

=
ex(α−1)

α− 1

1

C(β,N)
(2.35)

so that

C(β,N)EZx
β,N ∼ ex(α−1)

α− 1

which tends to zero as x ↓ −∞, and so C(β,N)EZx
β,N converges to zero

in probability. The assertions of Theorem 2.2.1 follow.

2.3 The Gibbs measure

With our preparation on the fluctuations of the free energy, we have

accumulated enough understanding about the partition function that

we can deal with the Gibbs measures. Clearly, there are a number

of ways of trying to describe the asymptotics of the Gibbs measures.

Recalling the general discussion on random Gibbs measures from Part

II, it should be clear that we are seeking a result on the convergence in

distribution of random measures. To be able to state such a result, we

have to introduce a topology on the spin configuration space that makes

it uniformly compact. The first natural candidate would seem to be

the product topology. However, given what we already know about the

partition function, this topology does not appear ideally adapted to give

adequate information. Recall that at low temperatures, the partition
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function was dominated by a ‘few’ spin configurations with exceptionally

large energy. This is a feature that should remain visible in a limit

theorem. A nice way to do this consists in mapping the hypercube to

the interval (0, 1] via

SN 3 σ → rN (σ) ≡ 1 −
N∑

i=1

(1 − σi)2
−i−1 ∈ (0, 1] (2.36)

Define the pure point measure µ̃β,N on (0, 1] by

µ̃β,N ≡
∑

σ∈SN

δrN (σ)µβ,N(σ) (2.37)

Our results will be expressed in terms of the convergence of these mea-

sures. It will be understood in the sequel that the space of measures

on (0, 1] is equipped with the topology of weak convergence, and all

convergence results hold with respect to this topology.

The behaviour of the measure at low temperatures is much more in-

teresting. Let us introduce the Poisson point process R on the strip

(0, 1] × R with intensity measure 1
2dy × e−xdx. If (Yk, Xk) denote the

atoms of this process, define a new point process Mα on (0, 1] × (0, 1]

whose atoms are (Yk, wk), where

wk ≡ eαXk

∫
R(dy, dx)eαx

(2.38)

for α > 1. With this notation we have that:

Theorem 2.3.1 If β >
√

2 ln 2, with α = β/
√

2 ln 2, then

µ̃β,N
D→ µ̃β ≡

∫

(0,1]×(0,1]

Mα(dy, dw)δyw (2.39)

Proof With uN(x) defined in (2.6), we define the point process RN on

(0, 1]× R by

RN ≡
∑

σ∈SN

δ(rN (σ),u−1
N (Xσ)) (2.40)

A standard result of extreme value theory (see [15], Theorem 5.7.2) is

easily adapted to yield that

RN
D→ R, as N ↑ ∞ (2.41)

where the convergence is in the sense of weak convergence on the space of

sigma-finite measures endowed with the (metrisable) topology of vague

convergence. Note that
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µβ,N (σ) =
eαu−1

N (Xσ)

∑
σ e

αu−1
N (Xσ)

=
eαu−1

N (Xσ)

∫
RN (dy, dx)eαx

(2.42)

Since
∫
RN (dy, dx)eαx <∞ a.s., we can define the point process

Mα,N ≡
∑

σ∈SN

δ(
rN (σ),

exp(αu
−1
N

(Xσ))
�
RN (dy,dx) exp(αx)

) (2.43)

on (0, 1] × (0, 1]. Then

µ̃β,N =

∫
Mα,N (dy, dw)δyw (2.44)

The only non-trivial point in the convergence proof is to show that the

contribution to the partition functions in the denominator from atoms

with uN (Xσ) < x vanishes as x ↓ −∞. But this is precisely what we have

shown to be the case in the proof of part (v) of Theorem 2.2.1. Standard

arguments then imply that first Mα,N
D→ Mα, and consequently, (2.39).

Remark 2.3.1 In [20], Ruelle introduced a process Wα that is nothing

but the marginal of Mα on the ‘masses’, i.e. on the second variable, as

an asymptotic description of the distribution of the masses of the Gibbs

measure of the REM in the infinite-volume limit. Our result implies in

particular that indeed
∑

σ∈SN
δµβ,N (σ)

D→ Wα if α > 1. Neveu in [18]

gave a sketch of the proof of this fact. Note that Theorem 2.3.1 con-

tains in particular the convergence of the Gibbs measure in the product

topology on SN , since cylinders correspond to certain subintervals of

(0, 1]. The formulation of Theorem 2.3.1 is very much in the spirit of

the metastate approach to random Gibbs measures. The limiting mea-

sure is a measure on a continuous space, and each point measure on

this set may appear as a ‘pure state’. The ‘metastate’, i.e. the law of

the random measure µ̃β , is a probability distribution, concentrated on

the countable convex combinations of pure states, randomly chosen by

a Poisson point process from an uncountable collection, while the coef-

ficients of the convex combination are again random variables and are

selected via another point process. The only aspect of metastates that

is missing here is that we have not ‘conditioned on the disorder’. The

point is, however, that there is no natural filtration of the disorder space

compatible with, say, the product topology, and thus in this model we

have no natural urge to ‘fix the disorder locally’; note, however, that it

is possible to represent the i.i.d. family Xσ as a sum of ‘local’ couplings,

i.e. let J∆, for any ∆ ⊂ N be i.i.d. standard normal variables. Then we
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can represent Xσ = 2−N/2
∑

∆⊂{1,...,N} σ∆J∆; obviously these variables

become independent of any of the J∆, with ∆ fixed, so that conditioning

on them would not change the metastate.

Let us discuss the properties of the limiting process µ̃β . It is easy to

see that, with probability one, the support of µ̃β is the entire interval

(0, 1]. But its mass is concentrated on a countable set, i.e. the measure

is pure point. To see this, consider the rectangle Aε ≡ (ln ε,∞) × (0, 1].

The process R restricted to this set has finite total intensity given by

ε−1, i.e. the number of atoms in that set is a Poissonian random variable

with parameter ε−1. If we remove the projection of these finitely many

random points from (0, 1], the remaining mass is given by
∫

(0,1]×(−∞,ln ε)

R(dy, dx)
eαx

∫
P(dx′)eαx′

=

∫ ln ε

−∞
P(dx)

eαx

∫
P(dx′)eαx′

(2.45)

We want to get a lower bound in probability on the denominator. The

simplest possible bound is obtained by estimating the probability of the

integral by the contribution of the largest atom, which of course follows

the double-exponential distribution. Thus

P

[∫
P(dx)eαx ≤ Z

]
≤ e−e− ln Z/α

= e−Z− 1
α (2.46)

Setting ΩZ ≡ {P :
∫
P(dx)eαx ≤ Z}, we conclude that, for α > 1,

P

[∫ ln ε

−∞
P(dx)

eαx

∫
P(dx′)eαx′

> γ

]
(2.47)

≤ P

[∫ ln ε

−∞
P(dx)

eαx

∫
P(dx′)eαx′

> γ, Ωc
Z

]
+ P[ΩZ ]

≤ P

[∫ ln ε

−∞
P(dx)eαx > γZ, Ωc

Z

]
+ P[ΩZ ]

≤ P

[∫ ln ε

−∞
P(dx)eαx > γZ

]
+ P[ΩZ ]

≤
E
∫ ln ε

−∞ P(dx)eαx

γ
+ P[ΩZ ] ≤ εα−1

(α− 1)γZ
+ e−Z− 1

α

Obviously, for any positive γ it is possible to choose Z as a function of

ε in such a way that the right-hand side tends to zero. But this implies

that, with probability one, all of the mass of the measure µ̃β is carried by
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a countable set, implying that µ̃β is pure point. A more refined analysis

is given in [14].

So we see that the phase transition in the REM expresses itself via a

change of the properties of the infinite-volume Gibbs measure mapped

to the interval from the Lebesgue measure at high temperatures to a

random dense pure point measure at low temperatures.

2.4 The replica overlap

While the random measure description of the phase transition in the

REM yields an elegant description of the thermodynamic limit, the pro-

jection to the unit interval loses the geometric structure of the space SN .

The description of this geometry is a central issue that we will continue

to pursue. We would like to describe ‘where’ in SN the mass of the Gibbs

measure is located. In a situation where no particular reference configu-

ration exists, a natural possibility is to compare two independent copies

of spin configurations drawn from the same Gibbs distribution to each

other. To make this precise, recall the function rN : SN × SN → (0, 1]

defined in (2.36). We are interested in the probability distribution of

RN (σ, σ′) under the product measure µβ,N ⊗ µβ,N , i.e. define a proba-

bility measure, ψβ,N , on [−1, 1] by

ψβ,N [ω](dz) ≡ µβ,N [ω] ⊗ µβ,N [ω] (RN (σ, σ′) ∈ dz) (2.48)

As we will see later, the analysis of the replica overlap is a crucial tool for

studying the Gibbs measures of more complicated models. The following

exposition is intended to give a first introduction to this approach:

Theorem 2.4.1 (i) For all β <
√

2 ln 2

lim
N↑∞

ψβ,N = δ0, a.s. (2.49)

(ii) For all β >
√

2 ln 2

ψβ,N
D→ δ0

(
1 −

∫
Wα(dw)w2

)
+ δ1

∫
Wα(dw)w2 (2.50)

Proof We write for any ∆ ⊂ [−1, 1]

ψβ,N(∆) = Z−2
β,NEσEσ′

∑

t∈∆
RN (σ,σ′)=t

eβ
√

N(Xσ+Xσ′ ) (2.51)

First, the denominator is bounded from below by [Z̃β,N(c)]2, and by

(2.22), with probability of order δ−2 exp(−Ng(c, β)), this in turn is
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larger than (1 − δ)2[EZ̃β,N(c)]2. Let first β <
√

2 ln 2. Assume initially

that ∆ ⊂ (0, 1) ∪ [−1, 0). We conclude that

Eψβ,N (∆) ≤ 1

(1 − δ)2
EσEσ′

∑

t∈∆
RN (σ,σ′)=t

1 + δ−2e−g(c,β)N (2.52)

∼ 1√
2πN

1

(1 − δ)2

∑

t∈∆

2e−NI(t)

√
1 − t2

+ δ−2e−g(c,β)N

for any β < c <
√

2 ln 2, where I : [−1, 1] → R denotes the Cramèr

entropy function defined in (??). Here we used that, if (1 − t)N = 2`,

` = 0, . . . , N , then

EσEσ′1IRN (σ,σ′)=t = 2−N

(
N

`

)
(2.53)

and the approximation of the binomial coefficient given in (??) and

(??)). Under our assumptions on ∆, we see immediately from this rep-

resentation that the right-hand side of (2.52) is clearly exponentially

small in N . It remains to consider the mass at the point 1, i.e.

ψβ,N (1) = Z−2
β,NEσ2−Ne2β

√
NXσ (2.54)

But we can split

Eσe
2β

√
NXσ = Zx

2β,N + (Zβ,N − Z2β,N − Zx
2β,N) (2.55)

For the first, we use that

EZx
2β,N ≤ 2−Ne2βN

√
2 ln 2 (2.56)

and for the second we use that it is

eN2β
√

2 ln 2eα[ln(N ln 2)+4π]
∑

σ

e2αu−1
N (xσ) (2.57)

Both terms are exponentially smaller than 2Neβ2N , and thus the mass

of ψβ,N at 1 also vanishes. This proves (2.49).

Let now β >
√

2 ln 2. We use the truncation introduced in Section

2.2. Note first that, for any interval ∆,
∣∣∣∣∣∣∣
ψβ,N (∆) − Z−2

β,NEσEσ′

∑

t∈∆
RN (σ,σ′)=t

1IXσ ,Xσ′≥uN (x)e
β
√

N(Xσ+Xσ′ )

∣∣∣∣∣∣∣
≤

2Zx
β,N

Zβ,N

(2.58)

We have already seen in the proof of Theorem (2.2.1) (see (??)), that

the right-hand side of (2.58) tends to zero in probability, as first N ↑ ∞
and then x ↓ −∞. On the other hand, for t 6= 1,
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P
[
∃σ,σ,:RN (σ,σ′)=t : Xσ > uN(x) ∧Xσ′ > uN (x)

]
(2.59)

≤ Eσσ′1IRN (σ,σ′)=t 22N
P [Xσ > uN(x)]

2
=

2e−I(t)Ne−2x

√
2πN

√
1 − t2

by the definition of uN (x) (see (2.5)). This implies again that any in-

terval ∆ ⊂ [−1, 1) ∪ [−1, 0) has zero mass. To conclude the proof it is

enough to compute ψβ,N(1). Clearly

ψβ,N(1) =
2−N

Z2β,N

Z2
β,N

(2.60)

By (v) of Theorem 2.2.1, one sees easily that

ψβ,N(1)
D→

∫
e2αzP(dz)

(∫
eαzP(dz)

)2 (2.61)

Expressing the left-hand side of (2.61) in terms of the point process Wα,

defined in (2.38), yields the expression for the mass of the atom at 1;

since the only other atom is at zero, the assertion (ii) follows from the

fact that ψβ,N is a probability measure. This concludes the proof.
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Gaussian comparison and applications

Comparison of Gaussian processes has a long-standing tradition in the

analysis of extremal and regularity properties of Gaussian processes. It

should not have come as a surprise that it provides a key tool in the

analysis of spin-glasses.

3.1 A theorem of Slepian-Kahane

Lemma 3.1.2 Let X and Y be two independent n-dimensional Gaus-

sian vectors. Let D1 and D2 be subsets of {1, . . . , n} × {1, . . . , n}. As-

sume that

EXiXj ≤ EYiYj , if (i, j) ∈ D1

EXiXj ≥ EYiYj , if (i, j) ∈ D2 (3.1)

EXiXj = EYiYj , if (i, j) 6∈ D1 ∪D2

Let f be a function on R
n, such that its second derivatives satisfy

∂2

∂xi∂xj
f(x) ≥ 0, if (i, j) ∈ D1

∂2

∂xi∂xj
f(x) ≤ 0, if (i, j) ∈ D2 (3.2)

Then

Ef(X) ≤ Ef(Y ) (3.3)

Proof The first step of the proof consists of writing

f(X) − f(Y ) =

∫ 1

0

dt
d

dt
f(Xt) (3.4)

19



20 3 Gaussian comparison and applications

where we define the interpolating process

Xt ≡
√
tX +

√
1 − t Y (3.5)

Next observe that

d

dt
f(Xt) =

1

2

n∑

i=1

∂

∂xi
f(Xt)

(
t−1/2Xi − (1 − t)−1/2Yi

)
(3.6)

Finally, we use the generalization of the Gaussian integration by parts

formula (??) to the multivariate setting:

Lemma 3.1.3 Let Xi, i ∈ {1, . . . , n} be a multivariate Gaussian process,

and let g : R
n → R be a differentiable function of at most polynomial

growth. Then

Eg(X)Xi =

n∑

j=1

E(XiXj)E
∂

∂xj
g(X) (3.7)

Applied to the mean of the left-hand side of (3.6) this yields

Ef(X) − Ef(Y ) =
1

2

∑

i,j

∫

0,1

dt (EXiXj − EYiYj) E
∂2

∂xj∂xi
f(Xt)

(3.8)

from which the assertion of the theorem can be read off.

Note that Equation (3.8) has the flavour of the fundamental theorem

of calculus on the space of Gaussian processes.

All classical comparison results in the theory of extremes of Gaussian

processes can be seen as special (or limiting) cases of this result. In all

applications, one chooses a process Y with well understood properties

to obtain estimates for a process X under investigations. For instance,

choosing for Y just iid rv’s allows us to bound the free energy of any

of our models through that of the REM. Unfortunately, these bounds

will as such be too crude to be interesting. A main obstacle to progress

along these lines was the fact that there appear no immediate candidates

for comparison processes about which we can say something that would

allow to improve these bounds.

3.2 The thermodynamic limit through comparison

A key observation that has led to the recent breakthroughs in spin

glass theory, made by F. Guerra and F.-L. Toninelli, was that Theo-

rem 3.1.2 can be used to prove the existence of the limit of the free
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energy. This problem had remained open for decades, as none of the

usual sub-additivity arguments appeared to work.

Theorem 3.2.4 [13] Assume that Xσ is a normalized Gaussian process

on SN with covariance

EXσXτ = ξ(RN (σ, τ)) (3.9)

where ξ : [−1, 1] → [0, 1] is convex and even. Then

lim
N↑∞

−1

βN
E ln Eσe

β
√

NXσ ≡ fβ (3.10)

exists.

Proof The proof of this fact is frightfully easy, once you think about

using Theorem 3.1.2. Choose any 1 < M < N . Let σ = (σ̂, σ̌) where

σ̂ = (σ1, σ2, . . . , σM ), and σ̌ = (σM+1, . . . , σN ). Define independent

Gaussian processes X̂ and X̌ on SM and SN−M , respectively, such that

EX̂σ̂X̂τ̂ = ξ(RM (σ̂, τ̂)) (3.11)

and

EX̌σ̌X̌τ̌ = ξ(RN−M (σ̌, τ̌ ) (3.12)

Set

Yσ ≡
√

M
N X̂σ̂ +

√
N−M

N X̌σ̌ (3.13)

Clearly,

EYσYτ = M
N ξ(RM (σ̂, τ̂ )) + N−M

N ξ(RN−M (σ̌, τ̌)) (3.14)

≥ ξ
(

M
N RM (σ̂, τ̂ ) + N−M

N (RN−M (σ̌, τ̌ ))
)

= ξ(RN (σ, τ))

Define real-valued functions FN (x) ≡ ln Eσe
β
√

Nxσ on R
2N

. It is straight-

forward that

EFN (Y ) = EFM (X) + EFN−M (X) (3.15)

A simple computation shows that, for σ 6= τ ,

∂2

∂xσ∂xτ
FN (x) = −2−2Nβ2Neβ

√
N(xσ+xτ )

Z2
β,N

≤ 0 (3.16)

Thus, Theorem 3.1.2 tells us that

EFN (X) ≥ EFN (Y ) = EFM (X) + EFN−M (X) (3.17)

This implies that the sequence −EFN (X) is subadditive, and this in

turn implies (see Section ??) that the free energy exists , provided it is
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bounded, which is easy to verify (see e.g. the discussion on the correct

normalisation in the SK model).

The same ideas can be used for other types of Gaussian processes, e.g.

the GREM-type models discussed above [8].

Convergence of the free energy in mean implies readily almost sure

convergence. This follows from a general concentration of measure prin-

ciple for functions of Gaussian random variables, analogous to Theorem

??. The following result can be found e.g. in [16], page 23:

Theorem 3.2.5 Let X1, . . . , XM be independent standard normal ran-

dom variables, and let f : RM → R be Lipschitz continuous with Lip-

schitz constant ‖f‖Lip. Set g ≡ f(X1, . . . , XM ). Then

P [|g − Eg| > x] ≤ 2 exp

(
− x2

2‖f‖2
Lip

)
(3.18)

Corollary 3.2.6 Assume that the function ξ is analytic with positive

Taylor coefficients. Then

P [|fβ,N − Efβ,N | > x] ≤ 2 exp

(
−Nx

2

2β2

)
(3.19)

In particular, limN↑∞ fβ,N = fβ, almost surely.

Proof If ξ(x) =
∑∞

p=1 a
2
px

p, we can construct Xσ as

Xσ =

∞∑

p=1

apN
−p/2

∑

1≤i1,...,ip≤N

J
(p)
i1...,ip

σi1 . . . σip (3.20)

with standard i.i.d. Gaussians J
(p)
i1...ip

. Check that, as a function of these

variables, the free energy is Lipschitz with Lipschitz constant βN−1/2.

3.3 The Parisi solution and Guerra’s bounds

The original approach to the computation of the free energy in the

SK models in the theoretical physics literature is quite remarkable.

Morally, it constitutes an attempt to compute nmoments, where n seems

strangely to go to infinity and to zero simultaneously. This idea is the

basis of the so-called replica method, or replica trick , that is a widely

used tool in the heuristic analysis of disordered systems. While we must

leave a detailed exposition of the heuristic approaches to the standard

textbooks [17, 19, 11], it maybe worthwhile to discuss this approach
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briefly. The basic idea is the observation that limn↓0(xn −1) = lnx, and

that for integer n, EZβ,N can be computed, at least in the sense that it

is possible to perform the average over the disorder and to obtain a de-

terministic expression (as we have seen in the case n = 2). The obvious

problem is that the computation of integer moments of Zβ,N does not

immediately allow us to infer information on the limit n ↓ 0, where n is

to be considered real valued.

Having seen that the comparison theorem yields existence of the free

energy almost for free, it is a bit more surprising that it allows to give

a variational principle that allows to compare the free energy to Parisi’s

solution. As we do not yet know what Parisi’s solution is, we will learn

about it in the process.

3.3.1 An extended caparison principle

As I have mentioned, comparison of the free energy of SK models to

simpler models do not immediately seem to work. The idea is to use

comparison on a much richer class of processes. Basically, rather than

comparing one process to another, we construct an extended process

on a product space and use comparison on this richer space. Let us

first explain this in an abstract setting. We have a process X on a

space S equipped with a probability measure Eσ . We want to com-

pute as usual the average of the logarithm of the partition function

F (X) = ln Eσe
βXσ . Now consider a second space T equipped with a

probability law Eα. Choose a Gaussian process, Y , independent of X ,

on this space, and define a further independent process, Z, on the prod-

uct space S×T . Define real valued functions, G,H , on the space of real

valued functions on T and S×T , respectively, via G(y) ≡ ln Eαe
βyα and

H(z) = ln EσEαe
βzσ,α . Note that H(X + Y ) = F (X) +G(Y ). Assume

that the covariances are chosen such that

cov(Xσ, Xσ′) + cov(Yα, Yα′) ≥ cov(Zσ,α, Zσ′,α′) (3.21)

Since we know that the second derivatives of H are negative, we get

from Theorem 3.1.2 that

EF (X) + EG(Y ) = EH(X + Y ) ≤ EH(Z) (3.22)

This is a useful relation if we know how to compute EG(Y ) and EH(Z).

This idea may look a bit crazy at first sight, but we must remember that

we have a lot of freedom in choosing the auxiliary spaces and processes

to our convenience. Before turning to the issue whether we can find
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useful computable processes Y and Z, let us see why we could hope to

find in this way sharp bounds.

3.4 The extended variational principle and thermodynamic

equilibrium

To do so, we will show that, in principle, we can represent the free energy

in the thermodynamic limit in the form EH(Z) − EG(Y ). To this end

let S = SM and T = SN , both equipped with their natural probability

measure Eσ. We will think of N � M , and both tending to infinity

eventually. We write again S × T 3 σ = (σ̂, σ̌). Consider the process

Xσ on SN+M with covariance ξ(RN+M (σ, σ′)). We would like to write

this as

Xσ = X̂σ̂ + X̌σ̌ + Zσ (3.23)

where all three processes are independent. Note that here and in the

sequel equalities between random variables are understood to hold in

distribution. Moreover, we demand that

cov(X̂σ̂, X̂σ̂′) = ξ( M
N+MRM (σ̂, σ̂′)) (3.24)

and

cov(X̌σ̌, X̌σ̌′) = ξ( N
N+MRN (σ̌, σ̌′)) (3.25)

Obviously, this implies that

cov(Zσ, Zσ′) = ξ
(

M
N+MRM (σ̂, σ̂′) + N

N+MRN (σ̌, σ̌′)
)

(3.26)

− ξ
(

M
N+MRM (σ̂, σ̂′)

)
− ξ

(
N

N+MRN (σ̌, σ̌′)
)

(we will not worry about the existence of such a decomposition; if ξ(x) =

xp, we can use the explicit representation in terms of p-spin interactions

to construct them). Now we first note that, by super-additivity [3]

lim
M↑∞

1

βM
lim inf
N↑∞

E log
Zβ,N+M

Zβ,N
= −fβ (3.27)

Thus we need a suitable representation for
Zβ,N+M

Zβ,N
. But

Zβ,N+M

Zβ,N
=

Eσe
β
√

N+M(X̌σ̌+Zσ+X̂σ̂)

Eσ̌e
β
√

N+M
�√

(1−M/(N+M))Xσ̌� (3.28)

Now we want to express the random variables in the denominator in the

form
√

(1 −M/(N +M))Xσ̌ = X̌σ̌ + Yσ̌ (3.29)
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where Y is independent of X̌. Comparing covariances, this implies that

cov(Yσ̌, Yσ̌′) = (1 −M/(N +M))ξ(RN (σ̌, σ̌′))

− ξ
(

N
N+MRN (σ̌, σ̌′)

)
(3.30)

As we will be interested in taking the limit N ↑ ∞ before M ↑ ∞, we

may expand in M/(N +M) to see that to leading order in M/(N +M),

cov(Yσ̌, Yσ̌′) ∼ M
N+MRN (σ̌, σ̌′)ξ′

(
N

N+MRN (σ̌, σ̌′)
)

− M
N+M ξ

(
N

N+MRN (σ̌, σ̌′)
)

(3.31)

Finally, we note that the random variables X̂σ̂ are negligible in the limit

N ↑ ∞, since their variance is smaller than ξ(M/(N + M)) and hence

their maximum is bounded by
√
ξ(M/(N +M))M ln 2, which even after

multiplication with
√
N +M gives no contribution in the limit if ξ tends

to zero faster than linearly at zero, which we can safely assume. Thus

we see that we can indeed express the free energy as

fβ = − lim
M↑∞

lim inf
N↑∞

1

βM
E ln

Eσ̂Ẽσ̌e
β
√

N+MZσ̂,σ̌

Ẽσ̌eβ
√

N+MYσ̌

(3.32)

where the measure Ẽσ̌ can be chosen as a probability measure defined

by Ẽσ̌(·) = Eσ̌e
β
√

N+MX̌σ̌ (·)/Žβ,N,M where Žβ,N,M ≡ Eσ̌e
β
√

N+MX̌σ̌ .

Of course this representation is quite pointless, because it is certainly

uncomputable, since Ẽ is effectively the limiting Gibbs measure that we

are looking for. However, at this point there occurs a certain miracle:

the (asymptotic) covariances of the processes X,Y, Z satisfy

ξ(x) + yξ′(y) − ξ(y) ≥ xξ′(y) (3.33)

for all x, y ∈ [−1, 1], if ξ is convex and even. This comes as a surprise,

since we did not do anything to impose such a relation! But it has the

remarkable consequence that asymptotically, by virtue of Lemma 3.1.2

it implies the bound

E ln Eσ̂e
β
√

MXσ̂ ≤ E ln
Eσ̂Ẽσ̌e

β
√

N+MZσ̂,σ̌

Ẽσ̌eβ
√

N+MYσ̌

(3.34)

(if the processes are taken to have the asymptotic form of the covari-

ances). Moreover, this bound will hold even if we replace the measure

Ẽ by some other probability measure, and even if we replace the over-

lap RN on the space SN by some other function, e.g. the ultrametric

dN . Seen the other way around, we can conclude that a lower bound of

the form (3.22) can actually be made as good as we want, provided we
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choose the right measure Ẽ. This observation is due to Aizenman, Sims,

and Starr [3]. They call the auxiliary structure made from a space T ,

a probability measure Eα on T , a normalized distance q on T , and the

corresponding processes, Y and Z, a random overlap structure

cov(Yα, Yα′) = q(α, α′)ξ′(q(α, α′)) − ξ(q(α, α′)) (3.35)

and the process Zσ,α on SN × [0, 1] with covariance

cov(Zσ,α, Zσ′,α′) ≡ RN (σ, σ′)ξ′(q(α, α′)) (3.36)

With these choices, and naturally Xσ our original process with covari-

ance ξ(RN ), the equation (3.21) is satisfied, and hence the inequality

(3.22) holds, no matter what choice of q and Eα we make. Restricting

these choices to the random genealogies obtained from Neveu’s process

by a time change with some probability distribution function m, and Eα

the Lebesgue measure on [0, 1], gives the bound we want.

This bound would be quite useless if we could not compute the right-

hand side. Fortunately, one can get rather explicit expressions. We need

to compute two objects:

EαEσe
β
√

NZσ,α (3.37)

and

Eαe
β
√

NYα (3.38)

In the former we use that Z has the representation

Zσ,α = N−1/2
N∑

i=1

σizα,i (3.39)

where the processes zα,i are independent for different i and have covari-

ance

cov(zα,i, zα′,i) = ξ′(q(α, α′)) (3.40)

Thus at least the σ- average is trivial:

EαEσe
β
√

NZσ,α = Eα

N∏

i=1

eln cosh(βzα,i) (3.41)

Thus we see that, in any case, we obtain bounds that only involve objects

that we introduced ourselves and that thus can be manipulated to be

computable. In fact, such computations have been done in the context

of the Parisi solution [17]. A useful mathematical reference is [4].

This is the form derived in Aizenman, Sims, and Starr [3].
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3.5 Parisi auxiliary systems

After this digression, that only served to show that in principle we can

find a perfect auxiliary system, we now turn to the search for useful

auxiliary systems. A sufficiently rich class was proposed (in disguise) by

Parisi. There are several ways to describe this, and we will discuss at

least two ways here, and, time permitting, give a motivation in the last

part of the talk.

Ruelle’s probability cascades. In this paragraph we describe the

auxiliary random structure introduced by Parisi in terms of Ruelle’s

probability cascades without very much motivation. They can be shown

to arise naturally in the analysis of the GREMs that we introduced in

the introduction. I will explain this relation briefly in Chapter 4.

The space T in this case is chosen as a n-level infinite tree indexed by

multi-indices i = (i1, . . . , in, ik ∈ N. To each i, we associate an energy

xi =

k∑

`=1

γ`x
`
i1,...,i`

where x`
i1,...,i`

is the i`-th atom of the Poisson point process P`
xi1 ,...,xi`−1

,

and all Poisson point processes P`
xi1 ,...,xi`−1

are independent for different

sub- and superscripts. The collection of all these Poisson point processes

is called a Poisson cascade. The numbers γ` must form a decreasing

sequence, and γn > 1.

Given such a Poisson cascade, we define the probability measure ξ on

T through its atoms

w(i) ≡ exp
(
xi

)

∑
j∈T

(
αxj

) (3.42)

Note that the Poisson processes
∑

i δ{eγ`xi1 ,...,i`−1,i`} are iid Poisson

point processes with intensity measure γ−1
` z−1−1/γ`dz, and denoting the

corresponding atoms by ξ`
i1,...,i`

, we can write w also as

w(i) =

∏n
`=1 ξ

`
i1,...,i`∑

j∈T
∏n

`=1 ξ
`
j1,...,j`

The random measure ξ on T will play the rôle of Eα.

T is naturally endowed with its tree overlap, Dn(i, j) ≡ n−1(min{` :

i` 6= j`} − 1). This distance will play the rôle of the distance q on T .

Finally, we define the processes Yi and Zi,σ with covariances
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cov(Yi, Yj) = Dn(i, j)ξ′(Dn(i, j)) − ξ(dn(i, j)) ≡ h(Dn(i, j)) (3.43)

and the process Zσ,i on SN × T with covariance

cov(Zσ,j, Zσ′,j) ≡ RN (σ, σ′)ξ′(Dn(i, j)) (3.44)

It is easy to see that such processes can be constructed as long as h, ξ′

are increasing functions. E.g.

Yi =

n∑

`=1

√
h(`/n)− h((` − 1)/n)Y

(`)
i1...i`

(3.45)

where Y
(`)
i1...i`

are independent standard normal random variables. In this

way, we have constructed an explicit random overlap structure, which

corresponds indead to the one generating the Parisi solution.

3.6 Computing with Poisson cascades

At first glance it still seems impossible to do any computation with this

complicated structure. Mirculously, this is not true. The key point

it contained in the following lemma, which reflects on a very amazing

invariance property of Poisson point processes.

Lemma 3.6.1 Assume that P be a Poisson process with intensity mea-

sure e−xdx. and let Yi,j, i ∈ N, j ∈ N, be iid standard normal random

variables. Let Y be a random variable that has the same distribution as

Yσ,1. Let gi : R → R be smooth functions, such that, for all |m| ≤ 2,

there exist C <∞, independent of N , such that

EY e
mgi(Y ) ≡ eLi(m) < C (3.46)

Let xi be the atoms of the Poisson process P.

E ln

∑∞
i=1 e

αxi+
�M

j=1 gi(Yi,j)

∑∞
i=1 e

αxi
=

M∑

i=1

Li(m)

m
(3.47)

where m = 1/α.

Proof Let for simplicity M = 1. The numerator on the left in (3.47)

can be written as ∫
eαzP̃(dz)
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where P̃ is the point process

P̃ ≡
∑

j

δzj+α−1g(Yj)

This follows from a general fact about Poisson point processes: if N ≡∑
i δxi is a Poisson point process with intensity measure λ on E, and Yi

are iid random variables with distribution ρ, then

Ñ
∑

i

δxi+Yi

is a Poisson process with intensity measure λ ∗ ρ on the set E + suppρ.

This follows from the representation of N as

N =

Nλ∑

i=1

δXi

where Nλ is Poisson with parameter
∫

E λ(dx) ≡ |λ| (if this is finite),

and Xi iid random variables with distribution λ/|λ|. Clearly

Ñ =
∑

i

δxi+Yi =

Nλ∑

i=1

δXi+Yi

is again of the form of a PPP, and the distriburion of Xi +Yi is λ∗ρ/|λ|.
Since the total intensity of the process is the parameter of Nλ, λ|, it

follows that the intensity measure of this process is the one we claimed.

Thus, in our case, P̃ is a PPP with intensity measure the convolu-

tion of the measure e−zdz and the distribution of the random variable

α−1g(Y ). A simple computation shows that this is EY e
g(Y )/αe−zdz, i.e.

a multiple of the original intensity measure! Thus the Poisson point

process
∑

j δeαzj+g(Yj ) has intensity measure EY e
g(Y )/αα−1x−1/α−1dx.

Finally, one makes the elementary but surprising and remarkable obser-

vation that the Poisson point process
∑

j δeαz [EY eg(Y )/α]α has the same

intensity measure, and therefore,
∑

j e
αzj+g(Yj) has the same law as∑

j e
αzj [EY e

g(Y )/α]α: multiplying each atom with an iid random vari-

able leads to the same process as multiplying each atom by a suitable

constant! The assertion of the Lemma follows immediately.

Remark 3.6.1 Noody seems to know who made this discovery. Michael

Aizenman told me about it and attributed to David Ruelle, but one

cannot find it in his paper. A slightly different proof from the one above

can be found in [21].
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Let us look first at (3.38). We can then write
∑

i

exi+β
√

MYi =
∑

i

eβ
√

NXσ̌+β
√

MYσ̌1...σ̌n−1
+
√

h(xn)−h(xn−1)Y
(n)

σ̌1...σ̌n

=
∑

i1...in−1

e
�n−1

`=1 γ`xi1...σ̌`−1
+β

√
MYi1...in−1

×
∑

in

e
gnxi1...in

+β
√

M
√

h(1)−h(1−1/n)Y
(n)

i1...in (3.48)

Using Lemma 3.6.1, the last factor can be replaced by

Ein
e

γnxi1...in
+β

√
M
√

h(1)−h(1−1/n)Y
(n)

i1...in (3.49)

→
[∫

dz√
2π
e−

z2

2 ezmnβ
√

M
√

h(1)−h(1−1/n)

]1/mn ∑

in

eγnxi (3.50)

= e
β2M

2 mn(h(1)−h(1−1/n))
∑

in

eγnxi (3.51)

(we use througout mn = 1/γn). Note that the last factor is independent

of the random variables xi1,...,i`
with ` < n. Thus

E ln
∑

i

eαxi+β
√

MYi = E ln
∑

i1,...,in−1

e
�n−1

`=1 γ`xi1,...,in−1
+β

√
MYi1,...,in−1

+
β2M

2
mn(h(1) − h(1 − 1/n)) + E ln

∑

in

eγnxi (3.52)

The first term now has the same form as the original one with n replaced

by n − 1, and thus the procedure can obviously iterated. As the final

result, we get that a consequence, we get that

M−1
E ln

∑
i e

xi+β
√

MYi

∑
i e

xi

=

n∑

`=1

β2

2
m`(h(1 − `/n) − h(1 − (`− 1)/n))

=
β2

2

∫ 1

0

m(x)xξ′′(x)dx (3.53)

The computation of the expression (3.37) is now very similar, but

gives a more complicated result since the analogs of the expressions

(3.49) cannot be computed explicitly. Thus, after the k-th step, we end

up with a new function of the remaining random variables Yi1...in−k
. The

result can be expressed in the form
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1

M
E ln ξiEσe

β
√

MZσ,i = ζ(0, h,m, β) (3.54)

(here h is the magnetic field (which we have so far hidden in the notation)

that can be taken as a parameter of the a priori distribution on the σ such

that Eσi(·) ≡ 1
2 cosh(βh)

∑
σi=±1 e

βhσi(·)) where ζ(1, h) = ln cosh(βh),

and

ζ(xa−1, h) =
1

ma
ln

∫
dz√
2π
e−z2/2emaζ(xa,h+z

√
ξ′(xa)−ξ′(x)) (3.55)

(we put xa = a/n).

In all of the preceeding discussion, the choice of the parameter n and

of the numbers mi = 1/γ1 is still free. From

We can now announce Guerra’s bound in the following form:

Theorem 3.6.2 [12] Let ζ(t, h,m, b) be the function defined in terms

of the recursion (3.55). Then

lim
N↑∞

N−1
E lnZβ,h,N ≤ inf

m
ζ(0, h,m, β) − β2

2

∫ 1

0

m(x)xξ′′(x)dx

(3.56)

where the infimum is over all probability distribution functions m on the

unit interval.

Remark 3.6.2 It is also interesting to see that the recursive form of the

function ζ above can also be represented in a closed form as the solution

of a partial differential equation. Consider the case ξ(x) = x2/2. Then

ζ is the solution of the differential equation

∂

∂t
ζ(t, h) +

1

2

(
∂2

∂h2
ζ(t, h) +m(t)

(
∂

∂h
ζ(t, h)

)2
)

= 0 (3.57)

with final condition

ζ(1, h) = ln cosh(βh) (3.58)

If m is a step function, it is easy to see that a solution is obtained by

setting, for x ∈ [xa−1, xa),

ζ(x, h) =
1

ma
ln Eze

maζ(xa,h+z
√

xa−x) (3.59)

For general convex ξ, analogous expressions can be obtained through

changes of variables [12].
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3.6.1 Talagrand’s theorem

In both approaches, it pays to write down the expression of the difference

between the free energy and the lower bound, since this takes a very

suggestive form.

To do this, we just have to use formula (3.8) with

Xt
σ,α ≡

√
t(Xσ + Yα) +

√
1 − tZσ,α (3.60)

and f(Xt) replaced byH(Xt) = ln EσEαe
β
√

NZt
σ,α . This gives the equal-

ity

H(X + Y ) −H(Z) =
1

2
E

∫ 1

0

dtµ̃⊗2
β,t,N (dσ, dα)

(
ξ(RN (σ, σ′))

+ q(α, α′)ξ′(q(α, α′))

− ξ(q(α, α′)) − RN (σ, σ′)ξ′(q(α, α′))
)

(3.61)

where the measure µ̃β,t,N is defined as

µ̃β,t,N(·) ≡ EσEαe
β
√

NXt
σ,α(·)

EσEαe
β
√

NXt
σ,α

(3.62)

where we interpret the measure µ̃β,t,N as a joint distribution on SN ×
[0, 1]. Note that for convex and even ξ, the function ξ(RN (σ, σ′)) +

q(α, α′)ξ′(q(α, α′)) − ξ(q(α, α′)) vanishes if and only if RN (σ, σ′) =

q(α, α′). Thus for the left hand side of (3.61) to vanish, the replicated

interpolating product measure should (for almost all t), concentrate on

configurations where the overlaps in the σ-variables coincide with the

genealogical distances of the α-variables. Thus we see that the inequal-

ity in Theorem 3.6.2 will turn into an equality if it is possible to choose

the parameters of the reservoir system in such a way that the the overlap

distribution on SN aligns with the genealogical distance distribution in

the reservoir once the systems are coupled by the interpolation.

This latter fact was proven very recently, and not long after the dis-

covery of Guerra’s bound, by M. Talagrand [26].

Theorem 3.6.3 [26] Let ζ(t, h,m, b) be the function defined in terms

of (3.57) and (3.58). Then

lim
N↑∞

N−1
E lnZβ,h,N = inf

m

(
ζ(0, h,m, .β) − β2

2

∫ 1

0

m(x)xξ′′(x)dx

)

(3.63)

where the infimum is over all probability distribution functions m on the

unit interval.
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I will not give the complex proof which the interested reader should

study in the original paper [26], but I will make some comments on the

key ideas. First, Talagrand proves more than the assertion 3.63. What

he actually proves is the following. For any ε > 0, there exists a positive

integer n(ε) < ∞, and a probability distribution function mn that is a

step function with n steps, such that for all t > ε,

lim
N↑∞

Eµ̃⊗2
β,t,N(dσ, dα)

(
ξ(RN (σ, σ′)) + q(α, α′)ξ′(q(α, α′))

−ξ(q(α, α′)) −RN (σ, σ′)ξ′(q(α, α′))
)

= 0 (3.64)

if the measure µ̃b,t,N corresponds to the genealogical distance obtained

from this function m. That is to say, if the coupling parameter t is

large enough, the SK model can be aligned to a GREM with any desired

number of hierarchies.

Second, the proof naturally proceeds by showing that the measure

Eµ̃⊗2
β,t,N seen as a distribution of the “overlaps” concentrates on the

set where the RN and q’s are the same. Such a fact is usually proven

by looking at a suitable Laplace transform, whose calculation amounts

again to the estimate of a free energy, this time in a replicated, coupled

system. Since the main effort goes into an upper bound, Guerra’s tech-

niques can again be used to provide help, even though the details of the

computations now get very involved.
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[5] A. Bovier, I. Kurkova, and M. Löwe. Fluctuations of the free energy in
the REM and the p-spin SK models. Ann. Probab., 30(2):605–651, 2002.

[6] P. Carmona and Y. Hu. Universality in Sherrington-Kirkpatrick’s Spin
Glass Model. preprint arXiv:math.PR/0403359 v2, May 2004.

[7] F. Comets and J. Neveu. The Sherrington-Kirkpatrick model of spin
glasses and stochastic calculus: the high temperature case. Comm. Math.
Phys., 166(3):549–564, 1995.

[8] P. Contucci, M. Degli Esposti, C. Giardinà, and S. Graffi. Thermody-
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