Institut für Angewandte Mathematik Sommersemester 2016

Dr. Robert Philipowski, Eva Kopfer, Angelo Profeta

"Einführung in die Statistik"

Übungszettel Nr. 9

Abgabe am 22.06.16

Aufgabe 1 (Zweiseitige Tests)

[4 Punkte]

Seien X_1, \ldots, X_n i.i.d. Zufallsvariablen mit $X_i \sim B(1, p), \ 0 . Man bestimme einen gleichmäßig besten unverfälschten Test zum Niveau <math>\alpha$ für das Testproblem $H_0: p = 0, 5$ gegen $H_1: p \neq 0, 5$.

Aufgabe 2 (p-Wert)

[6 Punkte]

Sei T eine reellwertige Statistik für die gilt

$$P_{\theta}[T \leq c] = F(c)$$
 für alle $\theta \in \Theta_0$,

wobei F eine stetige und auf dem Intervall $\{0 < F < 1\}$ strikt monotone Verteilungsfunktion ist. Der p-Wert p(x) zur Beobachtung $x \in X$ ist definiert als

$$p(x) = 1 - F(T(x)).$$

Zeigen Sie:

- a) Unter der Nullhypothese hat $p(\cdot)$ die Verteilung $\mathcal{U}_{(0,1)}$.
- b) Der Test mit Ablehnungsbereich $\{p(\cdot) < \alpha\}$ ist äquivalent zum Test zum Niveau α mit Ablehnungsbereich $\{T > c\}$.
- c) Sind p_1, \ldots, p_n die p-Werte bei n unabhängigen Untersuchungen bei Verwendung der Teststatistik T, so ist $S = -2\sum_{i=1}^n \log p_i$ auf der Nullhypothese χ^2_{2n} -verteilt, und durch den Ablehnungsbereich $\{S > \chi^2_{2n;1-\alpha}\}$ wird ein Test zum Niveau α definiert.

Aufgabe 3 (Gleichmäßig beste einseitige Tests)

[5 Punkte]

Wir betrachten das exponentielle Modell

$$p_{m,\sigma^2}(x) = (2\pi\sigma^2)^{-n/2} \exp\left(\sum_{i=1}^n \frac{(x_i - m)^2}{2\sigma^2}\right),$$

wobei m und σ^2 unbekannt sind. Sei im Folgenden \bar{x} das empirische Mittel und $\chi^2_{n-1,\alpha}$ das α -Quantil der Chiquadrat Verteilung mit n-1 Freiheitsgraden.

Wie in der Vorlesung gesehen ist der folgende Test φ kein gleichmäßig bester Test zum Niveau α der Nullhypothese $H_0: \sigma^2 \geq \sigma_0^2$ gegen die Alternative $H_1: \sigma^2 < \sigma_0^2$:

$$\varphi(x) = \begin{cases} 0 & \text{für } \sum_{i=1}^{n} (x_i - \bar{x})^2 \ge \sigma_0^2 \chi_{n-1,\alpha}^2, \\ 1 & \text{für } \sum_{i=1}^{n} (x_i - \bar{x})^2 < \sigma_0^2 \chi_{n-1,\alpha}^2. \end{cases}$$

Was passiert, wenn die Argumentation aus der Vorlesung auf den Test

$$\varphi(x) = \begin{cases} 0 & \text{für } \sum_{i=1}^{n} (x_i - \bar{x})^2 \le \sigma_0^2 \chi_{n-1,\alpha}^2, \\ 1 & \text{für } \sum_{i=1}^{n} (x_i - \bar{x})^2 > \sigma_0^2 \chi_{n-1,\alpha}^2, \end{cases}$$

zum Niveau α der Nullhypothese $H_0:\sigma^2\leq\sigma_0^2$ gegen die Alternative $H_1:\sigma^2>\sigma_0^2$ angewendet wird?

Aufgabe 4 (Optimalität für Konfidenzbereiche)

[5 Punkte]

Sei $(\Omega, \mathcal{F}, (\mathbb{P}_{\vartheta})_{\vartheta \in \Theta})$ ein statistisches Modell. Zu jedem $\vartheta \in \Theta$ sei φ_{ϑ} ein nichtrandomisierter Test der Nullhypothese $\Theta_0(\vartheta) = \{\vartheta\}$ zur Alternative $\Theta_1(\vartheta) = \Theta \setminus \{\vartheta\}$. Sei $\alpha \in (0, 1)$. Definiere

$$C \colon \Omega \to \mathcal{P}(\Theta), \ C(x) := \{ \vartheta \in \Theta \mid \varphi_{\vartheta}(x) = 0 \}.$$

- a) Seien die φ_{ϑ} für jedes $\vartheta \in \Theta$ gleichmäßig beste Tests zum Niveau α . Zeigen Sie, dass C ein gleichmäßig bester Konfidenzbereich zum Niveau α ist, d.h.
 - (i) C ist Konfidenzbereich zum Niveau α ,
 - (ii) für alle $\vartheta \in \Theta$ und $\vartheta' \in \Theta_1(\vartheta)$ und alle Konfidenzbereiche C' zum Niveau α gilt

$$\mathbb{P}_{\vartheta}(\vartheta' \in C(X)) \le \mathbb{P}_{\vartheta}(\vartheta' \in C'(X))$$

- b) Seien die φ_{ϑ} für jedes $\vartheta \in \Theta$ unverfälschte Tests zum Niveau α . Zeigen Sie, dass C ein unverfälschter Konfidenzbereich zum Niveau α ist, d.h.
 - (i) C ist Konfidenzbereich zum Niveau α ,
 - (ii) für alle $\vartheta \in \Theta$ und $\vartheta' \in \Theta_1(\vartheta)$ gilt

$$\mathbb{P}_{\vartheta}(\vartheta' \in C(X)) < 1 - \alpha.$$