Stochastische Prozesse

SoSem 2007 Blatt 5

- 1. (Stoppsatz für Supermartingale). Sei X_n (n = 0, 1, 2, ...) ein Supermartingal bzgl. einer Filtration (\mathcal{F}_n) , und sei C_n (n = 1, 2, ...) eine previsible Folge von beschränkten, nichtnegativen Zufallsvariablen.
 - a) Wie ist das diskrete stochastische Integral $C \bullet X$ definiert? Zeige, dass $C \bullet X$ wieder ein Supermartingal ist.
 - b) Formuliere und beweise einen Stoppsatz für Supermartingale.
- **2.** (Ruinproblem). Sei $p \in (0,1)$ mit $p \neq \frac{1}{2}$. Wir betrachten den random walk $S_n = Y_1 + \cdots + Y_n$, Y_i $(i \geq 1)$ i.i.d. mit $P[Y_i = +1] = p$ und $P[Y_i = -1] = q := 1 p$.
 - a) Zeige, dass folgende Prozesse Martingale sind:

$$M_n := \left(\frac{q}{p}\right)^{S_n}, \qquad N_n := S_n - n(p-q).$$

b) Für $a, b \in \mathbb{Z}$ mit a < 0 < b sei $T := \min \{ n \ge 0 \mid S_n \not\in (a, b) \}$. Zeige:

$$P[S_T = a] = \frac{1 - \left(\frac{p}{q}\right)^b}{1 - \left(\frac{p}{q}\right)^{b-a}} \quad \text{und}$$

$$E[T] = \frac{b}{p-q} - \frac{b-a}{p-q} \cdot \frac{1 - \left(\frac{p}{q}\right)^b}{1 - \left(\frac{p}{q}\right)^{b-a}}.$$

3. (Stochastische Lyapunov-Bedingung). Sei $(X_n)_{n\geq 0}$ eine Markovkette mit Zustandsraum $S=\mathbb{N}$, Startpunkt $x_0\in S$ und Übergangsmatrix p(x,y). Sei $u\geq 0$ eine superharmonische Funktion auf S, d.h. es gelte

$$u(x) \ge pu(x) = \sum_{y \in S} p(x, y) \cdot u(y)$$

für alle $x \in S$. Dann spielt u die Rolle einer stochastischen Lyapunov-Funktion:

a) $u(X_n)$ (n = 0, 1, ...) ist ein nichtnegatives Supermartingal, dessen Doob-Zerlegung $u(X_n) = M_n + A_n$ durch

$$A_n = \sum_{k=0}^{n-1} (pu - u)(X_k) \quad (n = 0, 1, \dots)$$

gegeben ist.

b) Für $S_{\varepsilon} := \{x \in S | (u - pu)(x) \ge \varepsilon \}$ gilt

$$E\left[\sum_{n=0}^{\infty} I_{S_{\varepsilon}}(X_n)\right] \leq \frac{u(x_0)}{\varepsilon},$$

d.h. die Aufenthaltszeit in S_{ε} hat einen endlichen Erwartungswert.

Insbesondere ergibt sich folgendes Stabilitätskriterium:

(i) Aus $\bigcap_{\varepsilon} S_{\varepsilon}^c = \{z\}$ und S_{ε}^c endlich für ein $\varepsilon > 0$ folgt:

$$P\left[\lim_{n\to\infty} X_n = z\right] = 1.$$

(ii) Aus $\bigcap_{\varepsilon} S_{\varepsilon}^{c} = \emptyset$ folgt:

$$P\left[\lim_{n\to\infty} X_n = \infty\right] = 1.$$

4. (Verschärfung von Murphy's law).

[Alles was eine realistische Chance hat zu passieren, wird auch passieren — und zwar eher früher als später.]

Sei T eine Stoppzeit. Es existiere ein $k \in \mathbb{N}$ und $\varepsilon > 0$ mit

$$P[T \le n + k \mid \mathcal{F}_n] > \varepsilon$$
 P -f.s. für alle $n \ge 0$.

Zeige durch Induktion

$$P[T > ik] \le (1 - \varepsilon)^i,$$

und folgere $E[T] < \infty$.

5. (Martingalformulierung von Bellman's Optimalitätsprinzip).

Der Gewinn pro Einsatz 1 in der n—ten Runde eines Spiels sei ε_n , wobei die ε_n i.i.d. Zufallsvariablen mit

$$P[\varepsilon_n = +1] = p$$
, $P[\varepsilon_n = -1] = q := 1 - p$, $\frac{1}{2} ,$

sind. Der Einsatz C_n in der n—ten Runde muss zwischen 0 und Z_{n-1} liegen, wobei Z_{n-1} das Kapital zur Zeit n-1 ist. Sei $N \in \mathbb{N}$ die Spieldauer. Unser Ziel ist es, die mittlere "Zinsrate" $E[\log(Z_N/Z_0)]$ zu maximieren, wobei das Anfangskapital Z_0 eine vorgegebene Konstante ist. Zeige: Für jede (previsible) Strategie ist $\log Z_n - n\alpha$ ein Supermartingal, wobei

$$\alpha := p \log p + q \log q + \log 2$$
 (Entropie),

und für eine bestimmte Strategie ist es sogar ein Martingal. Es gilt also $E[\log(Z_N/Z_0)] \leq N\alpha$ mit Gleichheit bei geeigneter Wahl der Strategie. Wie sieht die optimale Strategie aus?