Stochastic analysis I WS 2007/08 Series 6

1. (Variation of constants). Solve the stochastic differential equation

$$dY_t = r \, dt + \alpha \, Y_t \, dB_t$$

where r and α are real constants, and B_t is a one-dimensional Brownian motion.

2. (Feynman–Kac formula).

a) Let $D \subset \mathbb{R}^d$ be a bounded open domain, and let $V \in C(\overline{D})$ and $f \in C(\partial D)$. Suppose that $u \in C^2(D) \cap C(\overline{D})$ is a solution of the p.d.e.

$$\frac{1}{2}\Delta u - V u = 0 \quad \text{on } D, \qquad u = f \quad \text{on } \partial D.$$

Show that if $(B_t)_{t\geq 0}$ is a *d*-dimensional Brownian motion starting at $x \in D$ w.r.t. P_x , then

$$Z_t := u(B_t) \cdot \exp\left(-\int_0^t V(B_s) \, ds\right), \qquad 0 \le t \le T_{D^c},$$

is a local martingale (w.r.t. which filtration?). Conclude that

$$u(x) = E_x \left[f(B_{T_D^c}) \cdot \exp\left(-\int_0^{T_D^c} V(B_s) \, ds\right) \right] \qquad \forall x \in D.$$

b) Similarly prove that under appropriate assumptions on V and f, a solution of the parabolic equation

$$\frac{\partial}{\partial t}u(t,x) + \frac{1}{2}\Delta u(t,x) + V(t,x)u(t,x) = 0$$

on $[0, t_0] \times \mathbb{R}^d$ with boundary condition $u(t_0, x) = f(x)$ satisfies the Feynman–Kac formula

$$u(t,x) = E_x \left[f(B_{t_0-t}) \cdot \exp\left(-\int_t^{t_0} V(s, B_{s-t}) \, ds\right) \right].$$

(A corresponding representation for solutions of the time-dependent Schrödinger equation has been derived heuristically by Feynman – however in Feynman's approach, integration w.r.t Wiener measure is replaced by integration w.r.t a (not mathematically well-defined) infinitedimensional Lebesgue measure. For more background on Feynman path integrals and their application in quantum physics see the Feynman lectures or the first chapter in Glimm/Jaffe: Quantum physics.)

3. (Polar sets for Brownian motion). Let B_t be a Brownian motion in \mathbb{R}^d , $d \ge 2$, with start in x_0 .

a) Show that for d = 2 every point $x \in \mathbb{R}^d$ is polar, i.e.,

$$P[\exists t > 0 : B_t = x] = 0.$$

Hint: First consider the case $x \neq x_0$ *.*

b) Conclude that in general, d-2 dimensional subspaces are polar for Brownian paths.

4. (Covariation of Itô processes). Compute the covariation of two Itô processes

$$I_t = \int_0^t G_s \, dB_s^1$$
 and $J_t = \int_0^t H_s \, dB_s^2$,

where B_t^1 and B_t^2 are independent (\mathcal{F}_t) -Brownian motions, and G_t and H_t are continuous (\mathcal{F}_t) -adapted processes.