Stochastic analysis I WS 2007/08 Series 5

1. (Solutions of stochastic differential equations).

- a) Verify that the given processes solve the corresponding stochastic differential equations (B_t denotes a one-dimensional Brownian motion):
 - i) $X_t = e^{B_t}$ solves $dX_t = \frac{1}{2}X_t dt + X_t dB_t$.
 - ii) $X_t = \frac{B_t}{1+t}$; $B_0 = 0$ solves

$$dX_t = -\frac{1}{1+t}X_t \, dt + \frac{1}{1+t} \, dB_t; \qquad X_0 = 0.$$

iii) $X_t = \sin B_t$ with $B_0 = a \in \left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$ solves

$$dX_t = -\frac{1}{2}X_t \, dt + \sqrt{1 - X_t^2} \, dB_t \quad \text{ for } t < \inf\left\{s > 0; B_s \notin \left[-\frac{\pi}{2}, \frac{\pi}{2}\right]\right\}.$$

iv) $(X_1(t), X_2(t)) = (t, e^t B_t)$ solves

$$\begin{bmatrix} dX_1 \\ dX_2 \end{bmatrix} = \begin{bmatrix} 1 \\ X_2 \end{bmatrix} dt + \begin{bmatrix} 0 \\ e^{X_1} \end{bmatrix} dB_t.$$

v)
$$(X_1(t), X_2(t)) = (\cosh(B_t), \sinh(B_t))$$
 solves

$$\begin{bmatrix} dX_1 \\ dX_2 \end{bmatrix} = \frac{1}{2} \begin{bmatrix} X_1 \\ X_2 \end{bmatrix} dt + \begin{bmatrix} X_2 \\ X_1 \end{bmatrix} dB_t.$$

b) Show that the process $X_t = (B_t + t) \exp(-B_t - \frac{1}{2}t)$ is a martingale.

2. (Geometric Brownian motion). A geometric brownian motion with parameters $\mu, \alpha \in \mathbb{R}$ is a solution of the stochastic differential equation

$$dX_t = \mu X_t dt + \alpha X_t dB_t.$$

It is used for instance in the modelling of stock prices.

a) Find a solution of the SDE starting in $X_0 = x_0$ by using the ansatz

$$X_t = x_0 \cdot e^{aB_t + bt}.$$

b) Calculate $E[X_t]$ for $t \ge 0$. What is striking in the case $0 < \mu < \alpha^2/2$? Calculate cov (X_s, X_t) .

3. (Multidimensional Itô formula).

a) State and prove Itô's formula for \mathbb{R}^d -valued processes.

.

b) Deduce the Itô formula for time-dependent processes in \mathbb{R}^d .

4. (Stochastic representation of solutions of the Poisson problem). Let $D \subset \mathbb{R}^d$ be a bounded domain. Show that if $u \in C(\overline{D}) \cap C^2(D)$ is a solution of the Poisson problem

$$\frac{1}{2}\Delta u = -g \text{ in } D, \qquad u = f \text{ in } \partial D,$$

then

$$u(x) = E_x \left[\int_0^{T_D} g(B_t) dt \right] + E_x \left[f(B_{T_D}) \right] \qquad \forall x \in D \,,$$

where B_t is a Brownian motion starting in x with respect to P_x .