1. (Wiener integrals). Consider the stochastic integral

$$I_t := \int_0^t h_s \, dB_s, \qquad 0 \le s \le 1,$$

of a deterministic integrand $h \in L^2([0,1], ds)$ w.r.t. Brownian motion.

a) Give a Riemann sum approximation of the integral, and use this to prove that for all $t \in [0, 1]$, I_t is normally distributed with mean zero and variance

$$\tau(t) = \int_0^t h_r^2 dr.$$

b) Show more generally that I_t is a continuous Gaussian process with mean zero and covariance

$$\operatorname{Cov}\left(I_{s}, I_{t}\right) = \int_{0}^{s \wedge t} h_{r}^{2} dr.$$

c) Conclude that $(I_t)_{0 \le t \le 1}$ has the same distribution on C([0,1]) as the time changed Brownian motion

$$t \mapsto B_{\tau(t)}, \qquad 0 \le t \le 1.$$

2. (Integration w.r.t. an Itô process). Let

$$I_s := \int_0^s H_u \, dB_u, \qquad 0 \le s \le t,$$

with an (\mathcal{F}_s) -Brownian motion B_s on (Ω, \mathcal{A}, P) , and an (\mathcal{F}_s) -adapted process $H \in L^2(P \otimes \lambda)$. Suppose that τ_n is a sequence of partitions of [0, t] such that $|\tau_n| \to 0$. Prove that if $(G_s)_{0 \le s \le t}$ is another (\mathcal{F}_s) -adapted continuous bounded process, then the Riemann sums $\sum_{s \in \tau_n} G_s \cdot (I_{s'} - I_s)$ converge in $L^2(P)$, and

$$\int_0^t G_s \, dI_s := \lim_{n \to \infty} \sum_{s \in \tau_n} G_s \cdot (I_{s'} - I_s) = \int_0^t G_s \, H_s \, dB_s \quad P\text{-a.s.}$$

Hint: Express the Riemann sums as a stochastic integral $\int_0^t \dots dB_s$ w.r.t. Brownian motion).

- 3. (A local martingale that is not a martingale). Let B_t $(t \ge 0)$ be a Brownian motion in \mathbb{R}^3 with start in $x \ne 0$. Show:
 - a) $X_t = 1/\|B_t\|$ is a local martingale up to $T = \infty$ w.r.t. the filtration \mathcal{F}_t generated by B_t .
 - b) $\{X_s | 0 \le s \le t\}$ is uniformly integrable for all $t \ge 0$.
 - c) X_t is not a martingale.
- 4. (Stopping Theorem). State the stopping theorem for a continuous martingale $(M_t)_{t\geq 0}$. Give a complete detailed proof.