## Stochastic analysis I

TUTORIAL CLASSES: Mondays 12-2, SR 501, We. 6

1. (Stieltjes-calculus for functions of bounded variation).
a) Define the Lebesgue-Stieltjes-integral

$$
\int_{0}^{t} f(s) d g(s)
$$

of a locally bounded Borel-measurable function $f:[0, \infty) \rightarrow \mathbb{R}$ w.r.t an increasing continuous function $g:[0, \infty) \rightarrow \mathbb{R}$.
b) For a continuous function $g:[0, \infty) \rightarrow \mathbb{R}$ of bounded variation let

$$
V_{t}^{(1)}:=\sup _{\tau} \sum_{i}\left|g\left(t_{i+1}\right)-g\left(t_{i}\right)\right|,
$$

where the supremum is taken over all partitions of $[0, t]$. Show that $V^{(1)}$ and $V^{(1)}-g$ are increasing. Use this result to extend the definition of the Lebesgue-Stieltjes integral to functions of bounded variation.
c) Let $\tau_{n}$ be a sequence of partitions satisfying $\left|\tau_{n}\right| \rightarrow 0$. Prove: When $g$ is continuous and of bounded variation and $f$ is continuous, then the integral

$$
\int_{0}^{t} g(s) d f(s):=\lim _{n \rightarrow \infty} \sum_{\substack{t_{i} \in \tau_{n} \\ t_{i} \leq t}} g\left(t_{i}\right)\left(f\left(t_{i+1}\right)-f\left(t_{i}\right)\right)
$$

exists, and the integration by parts identity

$$
\int_{0}^{t} f(s) d g(s)=f(t) g(t)-f(0) g(0)-\int_{0}^{t} g(s) d f(s)
$$

holds. In particular, $\int g d f$ is independent of the choice of the sequence $\left(\tau_{n}\right)_{n \in \mathbb{N}}$.
2. (Wiener-Paley definiton of stochastic integrals). Let $\left(B_{t}\right)_{t \geq 0}$ be a one-dimensional Brownian motion with $B_{0}=0$. For a continuous function $h:[0,1] \rightarrow \mathbb{R}$ of bounded variation the integral $\int_{0}^{1} h(s) d B_{s}$ can be defined $P$-a.s. as in Exercise 1 c). Prove:

$$
E\left[\int_{0}^{1} h(s) d B_{s}\right]=0
$$

and

$$
E\left[\left(\int_{0}^{1} h(s) d B_{s}\right)^{2}\right]=\int_{0}^{1}(h(s))^{2} d s
$$

Use this isometry to define the integral $\int_{0}^{1} h(s) d B_{s}$ for all functions $h \in L^{2}(0,1)$.
3. (Discrete stochastic differential equations). Let $Y_{1}, Y_{2}, \ldots \in \mathcal{L}^{2}(\Omega, \mathcal{A}, P)$ be i.i.d. random variables with $E\left[Y_{i}\right]=0$ and $\operatorname{Var}\left(Y_{i}\right)=1$. For fixed $h>0$ let $\Pi_{h}:=\{0, h, 2 h, \ldots\}$. The process $X_{t}^{(h)}: \Omega \rightarrow \mathbb{R}$ is defined by

$$
\begin{aligned}
X_{0}^{(h)} & =x_{0} \\
X_{(k+1) h}^{(h)}-X_{k h}^{(h)} & =b\left(X_{k h}^{(h)}\right) h+\sigma\left(X_{k h}^{(h)}\right) \sqrt{h} Y_{k+1} .
\end{aligned}
$$

Let $\mathcal{F}_{n h}:=\sigma\left(Y_{1}, \ldots, Y_{n}\right)$ be the filtration generated by the random variables $Y_{i}$. Prove:
a) $\left(X_{t}^{(h)}\right)_{t \in \Pi_{h}}$ is a Markov chain with respect to $\left(\mathcal{F}_{t}\right)_{t \geq 0}$ with transition probabilities

$$
p(x, \cdot)=P \circ\left(x+b(x) h+\sigma(x) \sqrt{h} Y_{1}\right)^{-1}
$$

b) The Doob decomposition of $X_{t}^{(h)}$ is given by $X_{t}^{(h)}=A_{t}^{(h)}+M_{t}^{(h)}$ where

$$
\begin{aligned}
A_{n h}^{(h)} & =x_{0}+\sum_{k=0}^{n-1} b\left(X_{k h}^{(h)}\right) h, \text { and } \\
M_{n h}^{(h)} & =\sum_{k=0}^{n-1} \sigma\left(X_{k h}^{(h)}\right) \sqrt{h} Y_{k+1} .
\end{aligned}
$$

c) Show that for $t \in \Pi_{h}$,

$$
\begin{aligned}
\operatorname{Var}\left(M_{t+h}^{(h)}-M_{t}^{(h)} \mid \mathcal{F}_{t}\right) & =\sigma\left(X_{t}^{(h)}\right)^{2} h \\
\operatorname{Var}\left(M_{t}^{(h)}\right) & =\sum_{s<t, s \in \Pi_{h}} E\left[\sigma\left(X_{s}^{(h)}\right)^{2}\right] h .
\end{aligned}
$$

