Angewandte Stochastik

Blatt 8

1. (Studentsche t-Verteilung) Seien Z_0, Z_1, \ldots, Z_n unabhängige N(0,1)-verteilte Zufallsvariablen. Zeige, daß die Zufallsvariable

$$Z_0 \bigg/ \sqrt{\frac{1}{n} \sum_{i=1}^n Z_i^2}$$

die t-Verteilung mit n Freiheitsgraden besitzt.

2. (Asymptotik der Varianz von erwartungstreuen Schätzern)

a) Gegeben sei ein reguläres statistisches Modell mit Likelihoodfunktion

$$f(x \mid \theta), \quad x \in \mathfrak{X} \subset \mathbb{R}^k, \ \theta \in \Theta \subset \mathbb{R},$$

und Fisher-Information I. Zeige: Für jeden erwartungstreuen Schätzer T_n für θ basierend auf n unabhängigen Stichproben gilt

$$\operatorname{Var}_{\theta}(T_n) \ge \frac{1}{nI(\theta)}$$
 für alle $\theta \in \Theta$.

b) Ein Computer erzeuge n Zufallszahlen aus dem Intervall $[0,\theta].$ Zeige, daß

$$T_n(x_1,\ldots,x_n) := \max(x_1,\ldots,x_n) \frac{n+1}{n}$$

ein erwartungstreuer Schätzer für θ ist mit

$$\operatorname{Var}_{\theta}(T_n) = \frac{\theta^2}{n(n+2)}.$$

Wie verträgt sich dies mit dem Resultat in a)?

3. (Rao-Blackwellisierung). Seien X_1, \dots, X_n unabhängige Stichproben von einer Poissonverteilten Zufallsgröße mit Parameter $\lambda > 0$. Dann ist $T := I_{\{X_1 = 0\}}$ ein erwartungstreuer Schätzer für

$$g(\lambda) := e^{-\lambda} = \pi_{\lambda}(0)$$
.

Konstruiere einen besseren Schätzer durch Rao-Blackwellisierung.

4. (Existenz erwartungstreuer Schätzer). Gegeben sei das bedingte Poisson-Modell $(\mathbb{N}, \mathfrak{P}(\mathbb{N}), P_{\theta} : \theta > 0)$ mit

$$P_{\theta}(\{n\}) = \pi_{\lambda}(\{n\} \mid \mathbb{N}) = \frac{\theta^n}{n!(e^{\theta} - 1)}, \quad n \in \mathbb{N}.$$

Zeige: Der einzige erwartungstreue Schätzer für $g(\theta)=1-e^{-\theta}$ ist der sinnlose Schätzer $T(n)=1+(-1)^n, n\in\mathbb{N}$.

5. (Quadratischer Fehler). Die Zufallsvariable Y sei exponentialverteilt mit Parameter $1/\theta, \theta > 0$. Zeige: Y ist erwartungstreuer Schätzer für θ mit minimaler Varianz. Für welches a wird der quadratische Fehler $\mathbb{E}[(aY - \theta)^2]$ minimiert ?