Angewandte Stochastik

Blatt 7

1. (Gemeinsame Verteilungsdichte)

- a) Seien X, Y, Z unabhängige Zufallsvariablen mit Gleichverteilung auf [0,1]. Finde die gemeinsame Verteilungsdichte der Zufallsvariablen XY und Z^2 und zeige, dass $\mathbb{P}[XY < Z^2] = \frac{5}{9}$.
- b) Seien X und Y unabhängige Zufallsvariablen, exponentialverteilt mit Parameter 1 (siehe Blatt 4). Finde die gemeinsame Verteilungsdichte von U = X + Y und V = X/(X + Y) und zeige, dass V auf [0,1] gleichverteilt ist.

2. (Zweistichproben-Problem mit bekannter Varianz bzw. mit bekannten Erwartungswerten)

- a) Seien $X_1, \ldots, X_n, Y_1, \ldots, Y_n$ unabhängige Zufallsvariablen. Jedes X_i habe die Verteilung $N(m, \sigma^2)$ und jedes Y_j die Verteilung $N(\tilde{m}, \sigma^2)$; Dabei seien die Erwartungswerte m, \tilde{m} unbekannt, aber σ^2 bekannt. Konstruiere zu einem vorgegebenen Irrtumsniveau α einen Konfidenzkreis für (m, \tilde{m}) .
- b) Mit derselben Voraussetzung wie in Teil a) seien die X_i nun $N(m, \sigma^2)$ verteilt mit bekanntem m, und die Y_j seien $N(\tilde{m}, \tilde{\sigma}^2)$ verteilt mit bekanntem \tilde{m} . Die Varianzen σ^2 und $\tilde{\sigma}^2$ seien unbekannt. Bestimme ein Konfidenzintervall für $\sigma^2/\tilde{\sigma}^2$ zum Irrtumsniveau α .
- 3. (Beste lineare Vorhersage) Die gemeinsame Verteilung der Zufallsvariablen X_1, \ldots, X_n sei eine n-dimensionale Normalverteilung. Zeige:
 - a) X_1, \ldots, X_n sind genau dann linear unabhängig, wenn sie paarweise unkorreliert sind.
 - b) Es gibt Konstanten $a, a_1, \ldots, a_{n-1} \in \mathbb{R}$, so dass für $\hat{X}_n := a + \sum_{i=1}^{n-1} a_i X_i$ gilt: $X_n \hat{X}_n$ ist unabhängig von X_1, \ldots, X_{n-1} , und $\mathbb{E}[\hat{X}_n X_n] = 0$. (Hinweis: Minimiere die quadratische Abweichung $\mathbb{E}[(\hat{X}_n X_n)^2]$ und verwende a).)