Institut für Angewandte Mathematik Wintersemester 2023/24 Andreas Eberle, Stefan Oberdörster

11. Übungsblatt "Einführung in die Wahrscheinlichkeitstheorie"

Abgabe bis Montag 15.1. um 12 Uhr.

1. (Gesetz der großen Zahlen über charakteristische Funktionen)

- a) Beweisen Sie *mithilfe von charakteristischen Funktionen* die folgende Version des schwachen Gesetzes der großen Zahlen :
 - Sind $X_1, X_2, ... : \Omega \to \mathbb{R}$ i.i.d. Zufallsvariablen in $\mathcal{L}^1(\Omega, \mathcal{A}, \mathbb{P})$ mit $\mathbb{E}[X_i] = m$, dann konvergiert die Verteilung von $\frac{1}{n} \sum_{i=1}^n X_i$ schwach gegen das Diracmaß δ_m .
- b) Folgern Sie hieraus, dass $\frac{1}{n}\sum_{i=1}^n X_i$ auch stochastisch gegen m konvergiert.

2. (Charakteristische Funktionen II)

Zeigen sie mithilfe von charakteristischen Funktionen:

- a) Sind X und Y unabhängige Bin(m,p) bzw. Bin(n,p)-verteilte Zufallsvariablen, dann ist X+Y Bin(m+n,p)-verteilt.
- b) Sind X und Y unabhängige identisch verteilte Zufallsvariablen mit Erwartungswert 0 und Varianz 1, und stimmt die Verteilung der Zufallsvariablen $(X+Y)/\sqrt{2}$ mit der von X und Y überein, dann sind X und Y normalverteilt.
 - Hinweis: Zeigen sie zunächst, dass aus den Voraussetzungen eine Gleichung der Form $\varphi(t) = [\varphi(?)]^2$ für die charakteristische Funktion folgt. Iterieren Sie die Gleichung, und verwenden Sie die Taylorentwicklung $\varphi(t) = 1 t^2/2 + o(t^2)$.
- 3. (Konvergenz in Verteilung) Seien X_n, Y_n $(n \in \mathbb{N})$ sowie X und Y Zufallsvariablen auf $(\Omega, \mathcal{A}, \mathbb{P})$ so dass X_n in Verteilung gegen X, und Y_n in Verteilung gegen Y konvergiert.
 - a) Demonstrieren Sie anhand eines Beispiels, daß $X_n + Y_n$ nicht notwendig in Verteilung gegen X + Y konvergiert.
 - b) Zeigen Sie, daß diese Konvergenz gilt, wenn Y konstant ist.