Institut für angewandte Mathematik Wintersemester 13/14

Andreas Eberle, Lisa Hartung/Patrick Müller

1. Übungsblatt "Einführung in die Wahrscheinlichkeitstheorie"

Abgabe bis Di 22.10., 12 Uhr, in der Mathematikbibliothek (MZ)

1. (Unabhängigkeit und Unkorelliertheit)

Seien X und Y Zufallsvariablen mit Werten in $\{-1, 1\}$.

a) Es gelte

$$P[X = 1, Y = 1] = a,$$
 $P[X = 1, Y = -1] = b,$
 $P[X = -1, Y = 1] = c,$ $P[X = -1, Y = -1] = d.$

Wann sind X und Y unkorelliert bzw. unabhängig? Geben Sie jeweils notwendige und hinreichende Bedingungen an die Koeffizienten a, b, c, d der Massenfunktion der gemeinsamen Verteilung an.

b) Seien nun X und Y unabhängig und gleichverteilt. Zeigen Sie, dass die drei Zufallsvariablen $X, Y, X \cdot Y$ paarweise unabhängig sind. Sind sie auch unabhängig?

2. $(\sigma$ -Additivität und monotone Stetigkeit)

Sei \mathcal{A} eine σ -Algebra.

a) Zeigen Sie, dass eine additive Abbildung $P:\mathcal{A}\to [0,\infty]$ genau dann σ -additiv ist, wenn gilt

$$A_1 \subseteq A_2 \subseteq \dots \Rightarrow \lim_{n \to \infty} P[A_n] = P[\bigcup A_n].$$

b) Gilt $P[\Omega] = 1$, dann ist die σ -Additivität von P auch äquivalent zur \emptyset -Stetigkeit:

$$A_1 \supseteq A_2 \supseteq \dots \text{ mit } \bigcap A_n = \emptyset \quad \Rightarrow \quad \lim_{n \to \infty} P[A_n] = 0.$$

3. (Unendliche Kombinationen von Ereignissen)

Sei A_1, A_2, \ldots eine Folge von unabhängigen Ereignissen auf einem Wahrscheinlichkeitsraum (Ω, \mathcal{A}, P) mit $P[A_n] < 1$ und $P[\bigcup_{n=1}^{\infty} A_n] = 1$. Zeigen Sie:

$$P\left[\bigcap_{m=1}^{\infty}\bigcup_{n=m}^{\infty}A_n\right] = 1.$$

4. (DNA-Test)

Am Tatort eines Verbrechens wurden DNA-Spuren gefunden, die ein besonderes Merkmal aufweisen. In der Stadt wohnen 10^7 Menschen, von denen jeder das Merkmal unabhängig von den anderen mit der Wahrscheinlichkeit 10^{-7} trägt. Welche Verteilung beschreibt die Anzahl der Personen, die das Merkmal tragen, und wie kann man sie durch eine einfachere Verteilung näherungsweise beschreiben?

- a) Angenommen die Polizei hat bereits einen Verdächtigen mit dem Merkmal gefunden. Wie hoch ist die Wahrscheinlichkeit, dass es mindestens eine weitere Person mit dem Merkmal gibt?
- b) Wie unwahrscheinlich sollte das Merkmal sein, damit der Täter mit einer akzeptablen Wahrscheinlichkeit p eindeutig identifiziert werden kann?